Skip to content

gnosis-research/gnosis-track

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Gnosis-Track

πŸš€ Open Source Centralized Logging for AI and Machine Learning Systems

A modern, high-performance logging solution for AI/ML applications, distributed systems, and blockchain validators with real-time monitoring, secure storage, and easy integration.

✨ Key Features

  • πŸ”₯ Drop-in Integration: Simple 3-line setup for any Python application
  • πŸ“Š Real-time UI: Live log streaming and monitoring dashboard
  • πŸ”’ Secure Storage: AES256 encryption with distributed SeaweedFS backend
  • 🏠 Self-Hosted: Deploy your own infrastructure (free)
  • ☁️ Managed Service: Coming soon - we handle everything (paid)
  • πŸ“ˆ Scalable: Handle millions of log entries with O(1) performance

πŸš€ Quick Start

For AI/ML Applications

# Replace your existing logging with 3 lines:
import gnosis_track

gnosis_track.init(
    project="my-ml-experiments",
    run_name="experiment-v1.2"
)

# All your existing logging calls now stream to Gnosis-Track automatically!
import logging
logging.info("Training epoch 1 completed")

# Optional structured logging
gnosis_track.log({"epoch": 1, "loss": 0.23, "accuracy": 0.94})

For Bittensor Validators

# Bittensor-specific integration
import gnosis_track

gnosis_track.init(
    config=config,
    wallet=wallet,
    project="subnet-validators",
    uid=uid
)

# All bt.logging calls automatically captured
bt.logging.info("Validation completed")
gnosis_track.log({"step": step, "scores": scores})

Deploy Your Own Infrastructure

# Install
pip install gnosis-track

# Deploy SeaweedFS + UI
gnosis-track deploy --cluster-size 3

# Start monitoring dashboard
gnosis-track ui --port 8081

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Gnosis-Track                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Python Logger β”‚  Web UI  β”‚  CLI Tools β”‚  Monitoring    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚       Bucket Manager β”‚ Auth Manager β”‚ Config Manager     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚              SeaweedFS Client (S3 Compatible)           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    SeaweedFS Cluster                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚ Master  β”‚  β”‚ Volume  β”‚  β”‚  Filer  β”‚  β”‚   S3    β”‚    β”‚
β”‚  β”‚ :9333   β”‚  β”‚ :8080   β”‚  β”‚ :8888   β”‚  β”‚ :8333   β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

⚑ Performance Benefits

Metric Traditional Logging Gnosis-Track Improvement
File Access O(log n) O(1) 10x faster
Metadata Overhead ~200 bytes 40 bytes 5x smaller
Concurrent Access Limited Unlimited ∞x better
Storage Scaling Complex Automatic Easy scaling
Memory Usage High Low 3x lower
Search Performance Linear Indexed 100x faster

πŸ“Š Web UI

Start the web interface:

gnosis-track ui --port 8081

Features:

  • Real-time streaming: Watch logs as they arrive
  • Multi-project: Monitor multiple AI experiments or validators
  • Advanced filtering: Search by level, project, time range
  • Export options: JSON, CSV, Parquet formats

πŸ”§ Configuration

Self-Hosted Setup

# Configuration options
gnosis_track_endpoint = "your-seaweed-server.com:8333"
gnosis_track_bucket = "ml-experiments"  # or "subnet-logs" for validators
gnosis_track_access_key = "admin"
gnosis_track_secret_key = "your-secret"

Managed Service (Coming Soon)

# Point to our hosted service
api_key = "gt_xxxxx"  # Get from gnosis-track.com
endpoint = "https://api.gnosis-track.com"

🎯 Business Model

  • 🏠 Self-Hosted: Free - deploy your own SeaweedFS + UI
  • ☁️ Managed Service: Paid - we handle infrastructure, scaling, backups

πŸ› οΈ Installation

# Install the package
pip install gnosis-track

# For self-hosted deployment
gnosis-track install seaweedfs

# Start UI server
gnosis-track ui

πŸ“š Examples

Check the examples/ directory for:

  • Basic validator integration
  • Custom configuration
  • Monitoring and alerting
  • Advanced usage patterns

πŸ§ͺ Testing

# Run test data generators
python tests/comprehensive_test_data.py
python tests/infinite_random_logs.py

# Open UI to see test data
gnosis-track ui --port 8081

🀝 Contributing

We welcome contributions from the open source community! Here's how to get started:

  1. Fork the repository
  2. Create feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open Pull Request

Development Setup

# Clone the repo
git clone https://github.com/gnosis-research/gnosis-track.git
cd gnosis-track

# Install in development mode
pip install -e ".[dev]"

# Run tests
pytest tests/

# Start development UI
python -m gnosis_track.ui.server

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

🎯 Roadmap

βœ… Phase 1: Core Features (Completed)

  • SeaweedFS integration
  • Real-time web UI
  • Bittensor validator integration
  • Automatic log capture
  • Self-hosted deployment

🚧 Phase 2: Enhancement (In Progress)

  • Managed service launch
  • Advanced analytics dashboard
  • Multi-subnet support
  • Performance optimizations
  • Mobile-responsive UI

πŸ“‹ Phase 3: Scale (Planned)

  • Enterprise features
  • Third-party integrations
  • Custom dashboard builder
  • Advanced alerting system
  • Multi-cloud support

🌟 Community

Join our growing community of AI/ML developers and infrastructure operators:

  • Contributors: Thanks to all our contributors who make this project possible
  • AI/ML Engineers: Share feedback and feature requests
  • DevOps Teams: Help us improve deployment and scaling
  • Blockchain Validators: Test and improve validator integrations
  • Developers: Contribute code, docs, and ideas

⭐ Star History

Star History Chart


Made with ❀️ for the AI/ML community

Gnosis-Track is built by developers, for developers. We believe in open source, transparent logging, and empowering AI engineers with the tools they need to build amazing systems.

About

Open-source logging machine, for your AI experiments.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published