Kernel functions that are symmetric and integrate to 1, such as the Gaussian, are used in kernel density estimation, kernel regression, and other statistical algorithms https://en.wikipedia.org/wiki/Kernel_(statistics). The code below implements kernel functions from the Wikipedia article. They could be added to stdlib. An argument for not adding them to stdlib is that they are simple to code oneself, but if stdlib does add nonparametric statistical methods, the kernel functions should be defined in one place. In some cases the kernel functions are derivatives of known neural network activation functions, which have been added to stdlib. ```fortran module kind_mod implicit none private public :: dp integer, parameter :: dp = selected_real_kind(15, 307) ! double precision end module kind_mod module constants_mod use kind_mod, only: dp real(kind=dp), parameter, public :: & pi = 3.141592653589793238462643_dp, & pi_over_2 = pi/2.0_dp , & pi_over_4 = pi/4.0_dp , & two_over_pi = 2.0_dp/pi , & pi_reciprocal = 0.318309886183790671537767_dp, & pi_squared = 9.869604401089358618834491_dp, & pi_square_root = 1.772453850905516027298167_dp, & one_over_sqrt_two_pi = 0.39894228040143270_dp , & pi_ln = 1.144729885849400174143427_dp, & log_two_pi = 1.837877066409345483560659_dp, & pi_log10 = 0.497149872694133854351268_dp, & sqrt_2_over_pi = 0.7978845608028654_dp , & sqrt_pi_over_2 = 1.2533141373155003_dp , & e = 2.718281828459045235360287_dp, & e_reciprocal = 0.367879441171442321595523_dp, & e_squared = 7.389056098930650227230427_dp, & e_log10 = 0.434294481903251827651129_dp, & sqrt_two = 1.414213562373095_dp end module constants_mod module kernels_mod use kind_mod , only: dp use constants_mod, only: one_over_sqrt_two_pi,pi_over_2,pi_over_4,sqrt_two,two_over_pi implicit none private public :: weight real(kind=dp), parameter :: tiny_real = 1.0d0 contains elemental function weight(x,kernel) result(y) ! kernels for nonparametric regression from https://en.wikipedia.org/wiki/Kernel_(statistics) real(kind=dp) , intent(in) :: x character (len=*), intent(in) :: kernel real(kind=dp) :: y if (any(["uniform ","triangular ","epanechnikov","quartic ","triweight ", & "tricube ","cosine "] == kernel)) then if (abs(x) >= 1.0_dp) then y = 0.0_dp return end if end if select case (kernel) case ("uniform") ; y = 0.5_dp case ("triangular") ; y = 1.0_dp - abs(x) case ("epanechnikov"); y = 0.75_dp*(1.0_dp-x**2) case ("quartic") ; y = 0.9375_dp*(1.0_dp-x**2)**2 ! also known as biweight case ("triweight") ; y = 1.09375_dp*(1.0_dp-x**2)**3 case ("tricube") ; y = 0.86419753086_dp*(1.0_dp-abs(x)**3)**3 ! 0.86419753086 = 70/81 case ("gaussian") ; y = one_over_sqrt_two_pi*(exp(-0.5*x**2)) case ("cosine") ; y = pi_over_4*cos(pi_over_2*x) case ("logistic") ; y = 1.0_dp/(exp(x) + 2.0_dp + exp(-x)) case ("sigmoid") ; y = two_over_pi/(exp(x) + exp(-x)) case ("exponential") ; y = exp(-abs(x)) case ("silverman") ; y = 0.5_dp*exp(-abs(x)/sqrt_two)*cos(abs(x)/sqrt_two + pi_over_4) case default ; y = -huge(x) ! should not get here end select end function weight end module kernels_mod ```