|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import pandas as pd" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 2, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "review_data = pd.read_csv('C:/Users/awant/Documents/Reviews.csv')" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 3, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "review_data = review_data.sample(5000)" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 4, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "review_data = review_data[['Text','Score']]" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 5, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "review_data = review_data[review_data.Score != 3]" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 6, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "review_data['Sentiment'] = review_data.Score.map(lambda x: 0 if x < 3 else 1)" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 8, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "from sklearn.feature_extraction.text import CountVectorizer\n", |
| 64 | + "from sklearn.naive_bayes import MultinomialNB" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 9, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "cv = CountVectorizer(stop_words='english')\n", |
| 74 | + "mnb = MultinomialNB()" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 10, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [ |
| 82 | + { |
| 83 | + "data": { |
| 84 | + "text/plain": [ |
| 85 | + "1 3895\n", |
| 86 | + "0 692\n", |
| 87 | + "Name: Sentiment, dtype: int64" |
| 88 | + ] |
| 89 | + }, |
| 90 | + "execution_count": 10, |
| 91 | + "metadata": {}, |
| 92 | + "output_type": "execute_result" |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": [ |
| 96 | + "review_data.Sentiment.value_counts()" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 11, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "from imblearn.over_sampling import SMOTE" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": 25, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "from sklearn.feature_selection import SelectKBest" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 31, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "from imblearn.pipeline import make_pipeline as make_pipeline_imb" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": 26, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [], |
| 131 | + "source": [ |
| 132 | + "word_selector = SelectKBest(k=2000)" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 32, |
| 138 | + "metadata": {}, |
| 139 | + "outputs": [], |
| 140 | + "source": [ |
| 141 | + "pipeline = make_pipeline_imb(cv, word_selector, SMOTE(random_state=0), mnb)" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 33, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [], |
| 149 | + "source": [ |
| 150 | + "from sklearn.model_selection import train_test_split\n", |
| 151 | + "trainX,testX, trainY,testY = train_test_split(review_data.Text, review_data.Sentiment)" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": 34, |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [ |
| 159 | + { |
| 160 | + "name": "stderr", |
| 161 | + "output_type": "stream", |
| 162 | + "text": [ |
| 163 | + "C:\\Users\\awant\\Anaconda3\\lib\\site-packages\\imblearn\\pipeline.py:190: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14.\n", |
| 164 | + "Use os.path.join(memory.location, 'joblib') attribute instead.\n", |
| 165 | + " if memory.cachedir is None:\n", |
| 166 | + "C:\\Users\\awant\\Anaconda3\\lib\\site-packages\\imblearn\\pipeline.py:190: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14.\n", |
| 167 | + "Use os.path.join(memory.location, 'joblib') attribute instead.\n", |
| 168 | + " if memory.cachedir is None:\n", |
| 169 | + "C:\\Users\\awant\\Anaconda3\\lib\\site-packages\\imblearn\\pipeline.py:190: DeprecationWarning: The 'cachedir' attribute has been deprecated in version 0.12 and will be removed in version 0.14.\n", |
| 170 | + "Use os.path.join(memory.location, 'joblib') attribute instead.\n", |
| 171 | + " if memory.cachedir is None:\n" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "data": { |
| 176 | + "text/plain": [ |
| 177 | + "Pipeline(memory=None,\n", |
| 178 | + " steps=[('countvectorizer', CountVectorizer(analyzer='word', binary=False, decode_error='strict',\n", |
| 179 | + " dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',\n", |
| 180 | + " lowercase=True, max_df=1.0, max_features=None, min_df=1,\n", |
| 181 | + " ngram_range=(1, 1), preprocessor=None, stop_words='english...svm_estimator=None)), ('multinomialnb', MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))])" |
| 182 | + ] |
| 183 | + }, |
| 184 | + "execution_count": 34, |
| 185 | + "metadata": {}, |
| 186 | + "output_type": "execute_result" |
| 187 | + } |
| 188 | + ], |
| 189 | + "source": [ |
| 190 | + "pipeline.fit(trainX,trainY)" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": 19, |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [ |
| 199 | + "from sklearn.metrics import confusion_matrix" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 35, |
| 205 | + "metadata": {}, |
| 206 | + "outputs": [ |
| 207 | + { |
| 208 | + "data": { |
| 209 | + "text/plain": [ |
| 210 | + "array([[107, 59],\n", |
| 211 | + " [ 71, 910]], dtype=int64)" |
| 212 | + ] |
| 213 | + }, |
| 214 | + "execution_count": 35, |
| 215 | + "metadata": {}, |
| 216 | + "output_type": "execute_result" |
| 217 | + } |
| 218 | + ], |
| 219 | + "source": [ |
| 220 | + "pred = pipeline.predict(testX)\n", |
| 221 | + "confusion_matrix(y_pred=pred, y_true=testY)" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": 36, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "from sklearn.pipeline import make_pipeline" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 37, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [], |
| 238 | + "source": [ |
| 239 | + "review_pipeline = make_pipeline(cv, word_selector, mnb)" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": 38, |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [ |
| 247 | + { |
| 248 | + "data": { |
| 249 | + "text/plain": [ |
| 250 | + "Pipeline(memory=None,\n", |
| 251 | + " steps=[('countvectorizer', CountVectorizer(analyzer='word', binary=False, decode_error='strict',\n", |
| 252 | + " dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',\n", |
| 253 | + " lowercase=True, max_df=1.0, max_features=None, min_df=1,\n", |
| 254 | + " ngram_range=(1, 1), preprocessor=None, stop_words='english...x000002A4FB520840>)), ('multinomialnb', MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))])" |
| 255 | + ] |
| 256 | + }, |
| 257 | + "execution_count": 38, |
| 258 | + "metadata": {}, |
| 259 | + "output_type": "execute_result" |
| 260 | + } |
| 261 | + ], |
| 262 | + "source": [ |
| 263 | + "review_pipeline.fit(trainX,trainY)" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": 39, |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [ |
| 271 | + { |
| 272 | + "data": { |
| 273 | + "text/plain": [ |
| 274 | + "array([[ 49, 117],\n", |
| 275 | + " [ 25, 956]], dtype=int64)" |
| 276 | + ] |
| 277 | + }, |
| 278 | + "execution_count": 39, |
| 279 | + "metadata": {}, |
| 280 | + "output_type": "execute_result" |
| 281 | + } |
| 282 | + ], |
| 283 | + "source": [ |
| 284 | + "pred = review_pipeline.predict(testX)\n", |
| 285 | + "confusion_matrix(y_pred=pred, y_true=testY)" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "cell_type": "code", |
| 290 | + "execution_count": null, |
| 291 | + "metadata": {}, |
| 292 | + "outputs": [], |
| 293 | + "source": [] |
| 294 | + } |
| 295 | + ], |
| 296 | + "metadata": { |
| 297 | + "kernelspec": { |
| 298 | + "display_name": "Python 3", |
| 299 | + "language": "python", |
| 300 | + "name": "python3" |
| 301 | + }, |
| 302 | + "language_info": { |
| 303 | + "codemirror_mode": { |
| 304 | + "name": "ipython", |
| 305 | + "version": 3 |
| 306 | + }, |
| 307 | + "file_extension": ".py", |
| 308 | + "mimetype": "text/x-python", |
| 309 | + "name": "python", |
| 310 | + "nbconvert_exporter": "python", |
| 311 | + "pygments_lexer": "ipython3", |
| 312 | + "version": "3.6.4" |
| 313 | + } |
| 314 | + }, |
| 315 | + "nbformat": 4, |
| 316 | + "nbformat_minor": 2 |
| 317 | +} |
0 commit comments