@@ -199,12 +199,12 @@ def train(dataloader):
199
199
200
200
for idx , (label , text , offsets ) in enumerate (dataloader ):
201
201
optimizer .zero_grad ()
202
- predited_label = model (text , offsets )
203
- loss = criterion (predited_label , label )
202
+ predicted_label = model (text , offsets )
203
+ loss = criterion (predicted_label , label )
204
204
loss .backward ()
205
205
torch .nn .utils .clip_grad_norm_ (model .parameters (), 0.1 )
206
206
optimizer .step ()
207
- total_acc += (predited_label .argmax (1 ) == label ).sum ().item ()
207
+ total_acc += (predicted_label .argmax (1 ) == label ).sum ().item ()
208
208
total_count += label .size (0 )
209
209
if idx % log_interval == 0 and idx > 0 :
210
210
elapsed = time .time () - start_time
@@ -220,9 +220,9 @@ def evaluate(dataloader):
220
220
221
221
with torch .no_grad ():
222
222
for idx , (label , text , offsets ) in enumerate (dataloader ):
223
- predited_label = model (text , offsets )
224
- loss = criterion (predited_label , label )
225
- total_acc += (predited_label .argmax (1 ) == label ).sum ().item ()
223
+ predicted_label = model (text , offsets )
224
+ loss = criterion (predicted_label , label )
225
+ total_acc += (predicted_label .argmax (1 ) == label ).sum ().item ()
226
226
total_count += label .size (0 )
227
227
return total_acc / total_count
228
228
0 commit comments