@@ -15,105 +15,105 @@ test_that("simple test", {
15
15
expect_s3_class(model , " lgb.CVBooster" )
16
16
})
17
17
18
- # test_that("lightgbm", {
19
- #
20
- # model <- parsnip::boost_tree(mtry = 1, trees = 50, tree_depth = 15, min_n = 1)
21
- #
22
- # expect_all_modes_works(model, 'lightgbm')
23
- # })
24
- #
25
- #
26
- # test_that('lightgbm alternate objective', {
27
- # skip_if_not_installed("lightgbm")
28
- #
29
- # spec <- boost_tree(mtry = 1, trees = 50, tree_depth = 15, min_n = 1) %>%
30
- # set_engine("lightgbm", objective = "huber") %>%
31
- # set_mode("regression")
32
- #
33
- # lgb_fit <- spec %>% fit(mpg ~ ., data = mtcars)
34
- #
35
- # info <- jsonlite::fromJSON(lightgbm::lgb.dump(lgb_fit$fit))
36
- #
37
- # expect_equal(info$objective, "huber")
38
- # })
39
- #
40
- # test_that("lightgbm with tune", {
41
- #
42
- # model <- parsnip::boost_tree(
43
- # mtry = 5,
44
- # learn_rate = tune(),
45
- # loss_reduction = tune(),
46
- # sample_size = tune(),
47
- # trees = tune(),
48
- # min_n = tune(),
49
- # tree_depth = tune()
50
- # )
51
- # model <- parsnip::set_engine(model, "lightgbm")
52
- #
53
- # expect_can_tune_boost_tree(model)
54
- #
55
- # })
56
- #
57
- #
58
- # test_that("lightgbm mtry", {
59
- #
60
- # hyperparameters <- data.frame(mtry = c(1, 2, 6))
61
- # for(i in 1:nrow(hyperparameters)) {
62
- # model <- parsnip::boost_tree(mtry = hyperparameters$mtry[i], min_n = 1)
63
- # expect_all_modes_works(model, 'lightgbm')
64
- # }
65
- #
66
- # })
67
- #
68
- # test_that("lightgbm trees", {
69
- #
70
- # hyperparameters <- data.frame(trees = c(1, 20, 300))
71
- # for(i in 1:nrow(hyperparameters)) {
72
- # model <- parsnip::boost_tree(trees = hyperparameters$trees[i], min_n = 1)
73
- # expect_all_modes_works(model, 'lightgbm')
74
- # }
75
- #
76
- # })
77
- #
78
- #
79
- # test_that("lightgbm min_n hyperparameter", {
80
- #
81
- # hyperparameters <- data.frame(min_n = c(1, 10))
82
- # for(i in 1:nrow(hyperparameters)) {
83
- # model <- parsnip::boost_tree(min_n = hyperparameters$min_n[i])
84
- # expect_all_modes_works(model, 'lightgbm')
85
- # }
86
- #
87
- # })
88
- #
89
- # test_that("lightgbm tree_depth", {
90
- # hyperparameters <- data.frame(tree_depth = c(1, 16))
91
- # for(i in 1:nrow(hyperparameters)) {
92
- # model <- parsnip::boost_tree(tree_depth = hyperparameters$tree_depth[i], min_n = 1)
93
- # expect_all_modes_works(model, 'lightgbm')
94
- # }
95
- # })
96
- #
97
- # test_that("lightgbm loss_reduction", {
98
- # hyperparameters <- data.frame(loss_reduction = c(0, 0.2, 2))
99
- # for(i in 1:nrow(hyperparameters)) {
100
- # model <- parsnip::boost_tree(loss_reduction = hyperparameters$loss_reduction[i], min_n = 1)
101
- # expect_all_modes_works(model, 'lightgbm')
102
- # }
103
- # })
104
- #
105
- # test_that("lightgbm tree_depth", {
106
- # hyperparameters <- data.frame(loss_reduction = c(0, 0.2, 2))
107
- # for(i in 1:nrow(hyperparameters)) {
108
- # model <- parsnip::boost_tree(loss_reduction = hyperparameters$loss_reduction[i], min_n = 1)
109
- # expect_all_modes_works(model, 'lightgbm')
110
- # }
111
- # })
112
- #
113
- # test_that("lightgbm multi_predict", {
114
- # model <- parsnip::boost_tree(mtry = 5, trees = 5, mode = "regression", min_n = 1)
115
- # model <- parsnip::set_engine(model, "lightgbm")
116
- #
117
- # expect_multi_predict_works(model)
118
- # })
119
- #
18
+ test_that(" lightgbm" , {
19
+
20
+ model <- parsnip :: boost_tree(mtry = 1 , trees = 50 , tree_depth = 15 , min_n = 1 )
21
+
22
+ expect_all_modes_works(model , ' lightgbm' )
23
+ })
24
+
25
+
26
+ test_that(' lightgbm alternate objective' , {
27
+ skip_if_not_installed(" lightgbm" )
28
+
29
+ spec <- boost_tree(mtry = 1 , trees = 50 , tree_depth = 15 , min_n = 1 ) %> %
30
+ set_engine(" lightgbm" , objective = " huber" ) %> %
31
+ set_mode(" regression" )
32
+
33
+ lgb_fit <- spec %> % fit(mpg ~ . , data = mtcars )
34
+
35
+ info <- jsonlite :: fromJSON(lightgbm :: lgb.dump(lgb_fit $ fit ))
36
+
37
+ expect_equal(info $ objective , " huber" )
38
+ })
39
+
40
+ test_that(" lightgbm with tune" , {
41
+
42
+ model <- parsnip :: boost_tree(
43
+ mtry = 5 ,
44
+ learn_rate = tune(),
45
+ loss_reduction = tune(),
46
+ sample_size = tune(),
47
+ trees = tune(),
48
+ min_n = tune(),
49
+ tree_depth = tune()
50
+ )
51
+ model <- parsnip :: set_engine(model , " lightgbm" )
52
+
53
+ expect_can_tune_boost_tree(model )
54
+
55
+ })
56
+
57
+
58
+ test_that(" lightgbm mtry" , {
59
+
60
+ hyperparameters <- data.frame (mtry = c(1 , 2 , 6 ))
61
+ for (i in 1 : nrow(hyperparameters )) {
62
+ model <- parsnip :: boost_tree(mtry = hyperparameters $ mtry [i ], min_n = 1 )
63
+ expect_all_modes_works(model , ' lightgbm' )
64
+ }
65
+
66
+ })
67
+
68
+ test_that(" lightgbm trees" , {
69
+
70
+ hyperparameters <- data.frame (trees = c(1 , 20 , 300 ))
71
+ for (i in 1 : nrow(hyperparameters )) {
72
+ model <- parsnip :: boost_tree(trees = hyperparameters $ trees [i ], min_n = 1 )
73
+ expect_all_modes_works(model , ' lightgbm' )
74
+ }
75
+
76
+ })
77
+
78
+
79
+ test_that(" lightgbm min_n hyperparameter" , {
80
+
81
+ hyperparameters <- data.frame (min_n = c(1 , 10 ))
82
+ for (i in 1 : nrow(hyperparameters )) {
83
+ model <- parsnip :: boost_tree(min_n = hyperparameters $ min_n [i ])
84
+ expect_all_modes_works(model , ' lightgbm' )
85
+ }
86
+
87
+ })
88
+
89
+ test_that(" lightgbm tree_depth" , {
90
+ hyperparameters <- data.frame (tree_depth = c(1 , 16 ))
91
+ for (i in 1 : nrow(hyperparameters )) {
92
+ model <- parsnip :: boost_tree(tree_depth = hyperparameters $ tree_depth [i ], min_n = 1 )
93
+ expect_all_modes_works(model , ' lightgbm' )
94
+ }
95
+ })
96
+
97
+ test_that(" lightgbm loss_reduction" , {
98
+ hyperparameters <- data.frame (loss_reduction = c(0 , 0.2 , 2 ))
99
+ for (i in 1 : nrow(hyperparameters )) {
100
+ model <- parsnip :: boost_tree(loss_reduction = hyperparameters $ loss_reduction [i ], min_n = 1 )
101
+ expect_all_modes_works(model , ' lightgbm' )
102
+ }
103
+ })
104
+
105
+ test_that(" lightgbm tree_depth" , {
106
+ hyperparameters <- data.frame (loss_reduction = c(0 , 0.2 , 2 ))
107
+ for (i in 1 : nrow(hyperparameters )) {
108
+ model <- parsnip :: boost_tree(loss_reduction = hyperparameters $ loss_reduction [i ], min_n = 1 )
109
+ expect_all_modes_works(model , ' lightgbm' )
110
+ }
111
+ })
112
+
113
+ test_that(" lightgbm multi_predict" , {
114
+ model <- parsnip :: boost_tree(mtry = 5 , trees = 5 , mode = " regression" , min_n = 1 )
115
+ model <- parsnip :: set_engine(model , " lightgbm" )
116
+
117
+ expect_multi_predict_works(model )
118
+ })
119
+
0 commit comments