diff --git a/facebookresearch_pytorchvideo_slowfast.md b/facebookresearch_pytorchvideo_slowfast.md index 1f9de94..fee71df 100644 --- a/facebookresearch_pytorchvideo_slowfast.md +++ b/facebookresearch_pytorchvideo_slowfast.md @@ -20,7 +20,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/SlowFast #### Imports -Load the model: +모델 불러오기: ```python import torch @@ -28,7 +28,7 @@ import torch model = torch.hub.load('facebookresearch/pytorchvideo', 'slowfast_r50', pretrained=True) ``` -Import remaining functions: +모듈 불러오기: ```python from typing import Dict @@ -48,9 +48,10 @@ from pytorchvideo.transforms import ( ) ``` -#### Setup +#### 설정 -Set the model to eval mode and move to desired device. + +모델을 평가 모드로 설정하고 원하는 장치에 할당합니다. ```python # Set to GPU or CPU @@ -59,7 +60,8 @@ model = model.eval() model = model.to(device) ``` -Download the id to label mapping for the Kinetics 400 dataset on which the torch hub models were trained. This will be used to get the category label names from the predicted class ids. + +토치 허브 모델 학습에 사용된 Kinetics 400 데이터셋에 레이블 매핑(label mapping)을 진행하기 위해 ID를 다운로드 합니다. 이는 예측 클래스 ID로부터 카테고리 레이블 이름을 가져오는데 사용됩니다. ```python json_url = "https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json"