Skip to content

Commit 6adadf8

Browse files
committed
Fix tutorials/*/README.md
fix references to notebook files and typos ref:6cd192a4df1e49a2f86ea0f0c43c99e5d21adb48
1 parent 5308b6c commit 6adadf8

File tree

6 files changed

+29
-29
lines changed

6 files changed

+29
-29
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ It's better to start CatBoost exploring from this basic tutorials.
3737
## Model analysis
3838

3939
* [Object Importance Tutorial](model_analysis/object_importance_tutorial.ipynb)
40-
* This tutorial shows how to evaluate importances of the train objects for test objects. And with using of importance scores detect noisy train objects.
40+
* This tutorial shows how to evaluate importances of the train objects for test objects, and how to detect broken train objects by using the importance scores.
4141

4242
* [SHAP Values Tutorial](model_analysis/shap_values_tutorial.ipynb)
4343
* This tutorial shows how to use [SHAP](https://github.com/slundberg/shap) python-package to get and visualize feature importances.
@@ -49,7 +49,7 @@ It's better to start CatBoost exploring from this basic tutorials.
4949
* This tutorial shows how to visualize catboost decision trees.
5050

5151
* [Feature statistics tutorial](model_analysis/feature_statistics_tutorial.ipynb)
52-
* This tutorial shows how to calculate feature statistics for catboost model
52+
* This tutorial shows how to calculate feature statistics for catboost model.
5353

5454
## Custom loss
5555

@@ -76,7 +76,7 @@ It's better to start CatBoost exploring from this basic tutorials.
7676
## Tools
7777

7878
* [Gradient Boosting: CPU vs GPU](tools/google_colaboratory_cpu_vs_gpu_tutorial.ipynb)
79-
* This is a basic tutorial which shows how to run gradient boosting on CPU and GPU on Google Colaboratory.
79+
* This is a basic tutorial which shows how to run gradient boosting on CPU and GPU on Google Colaboratory.
8080

8181
* [Regression on Gradient Boosting: CPU vs GPU](tools/google_colaboratory_cpu_vs_gpu_regression_tutorial.ipynb)
8282
* This is a basic tutorial which shows how to run regression on gradient boosting on CPU and GPU on Google Colaboratory.
@@ -112,6 +112,6 @@ It's better to start CatBoost exploring from this basic tutorials.
112112
* [PyData Boston tutorial](events/2019_odsc_east/odsc_east_2019.ipynb)
113113
* Tutorial from PyData Boston, April 30, 2019.
114114

115-
## Tutorials on Russian
115+
## Tutorials in Russian
116116

117-
* Find tutorials on Russian language on the separate [page](ru/README.md).
117+
* Find tutorials in Russian on the separate [page](ru/README.md).

apply_model/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
11
## Apply model
22

3-
* [CatBoost CoreML Tutorial](apply_model/coreml/coreml_export_tutorial.ipynb)
3+
* [CatBoost CoreML Tutorial](./coreml/coreml_export_tutorial.ipynb)
44
* Explore this tutorial to learn how to convert CatBoost model to CoreML format and use it on any iOS device.
55

6-
* [Export CatBoost Model as C++ code Tutorial](apply_model/model_export_as_cpp_code_tutorial.md)
6+
* [Export CatBoost Model as C++ code Tutorial](./model_export_as_cpp_code_tutorial.md)
77
* Catboost model could be saved as standalone C++ code.
88

9-
* [Export CatBoost Model as Python code Tutorial](apply_model/model_export_as_python_code_tutorial.md)
9+
* [Export CatBoost Model as Python code Tutorial](./model_export_as_python_code_tutorial.md)
1010
* Catboost model could be saved as standalone Python code.
1111

12-
* [Apply CatBoost model from Java](apply_model/java/train_model.ipynb)
13-
* Explore how to apply CatBoost model from Java application. If you just want to look at code snippets you can go directly to [CatBoost4jPredictionTutorial.java](apply_model/java/src/main/java/CatBoost4jPredictionTutorial.java)
12+
* [Apply CatBoost model from Java](./java/train_model.ipynb)
13+
* Explore how to apply CatBoost model from Java application. If you just want to look at code snippets you can go directly to [CatBoost4jPredictionTutorial.java](./java/src/main/java/CatBoost4jPredictionTutorial.java)
1414

15-
* [Apply CatBoost model from Rust](apply_model/rust/train_model.ipynb)
16-
* Explore how to apply CatBoost model from Rust application. If you just want to look at code snippets you can go directly to [main.rs](apply_model/rust/src/main.rs)
15+
* [Apply CatBoost model from Rust](./rust/train_model.ipynb)
16+
* Explore how to apply CatBoost model from Rust application. If you just want to look at code snippets you can go directly to [main.rs](./rust/src/main.rs)

apply_model/dotnet/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
Tutorial for applying theo model in .NET
1+
Tutorial for applying the model in .NET

events/README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,19 @@
11
## Events
22

3-
* [PyData Moscow tutorial](events/pydata_moscow_oct_13_2018.ipynb)
3+
* [PyData Moscow tutorial](./pydata_moscow_oct_13_2018.ipynb)
44
* Tutorial from PyData Moscow, October 13, 2018.
55

6-
* [PyData NYC tutorial](events/pydata_nyc_oct_19_2018.ipynb)
6+
* [PyData NYC tutorial](./pydata_nyc_oct_19_2018.ipynb)
77
* Tutorial from PyData New York, October 19, 2018.
88

9-
* [PyData LA tutorial](events/pydata_la_oct_21_2018.ipynb)
9+
* [PyData LA tutorial](./pydata_la_oct_21_2018.ipynb)
1010
* Tutorial from PyData Los Angeles, October 21, 2018.
1111

12-
* [PyData Moscow tutorial](events/datastart_moscow_apr_27_2019.ipynb)
12+
* [PyData Moscow tutorial](./datastart_moscow_apr_27_2019.ipynb)
1313
* Tutorial from PyData Moscow, April 27, 2019.
1414

15-
* [PyData London tutorial](events/2019_pydata_london/pydata_london_2019.ipynb)
15+
* [PyData London tutorial](./2019_pydata_london/pydata_london_2019.ipynb)
1616
* Tutorial from PyData London, June 15, 2019.
1717

18-
* [PyData Boston tutorial](events/2019_odsc_east/odsc_east_2019.ipynb)
18+
* [PyData Boston tutorial](./2019_odsc_east/odsc_east_2019.ipynb)
1919
* Tutorial from PyData Boston, April 30, 2019.

model_analysis/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
11
## Model analysis
22

3-
* [Object Importance Tutorial](model_analysis/object_importance_tutorial.ipynb)
4-
* This tutorial shows how to evaluate importances of the train objects for test objects. And with using of importance scores detect noisy train objects.
3+
* [Object Importance Tutorial](./object_importance_tutorial.ipynb)
4+
* This tutorial shows how to evaluate importances of the train objects for test objects, and how to detect noisy train objects by using the importance scores.
55

6-
* [SHAP Values Tutorial](model_analysis/shap_values_tutorial.ipynb)
6+
* [SHAP Values Tutorial](./shap_values_tutorial.ipynb)
77
* This tutorial shows how to use [SHAP](https://github.com/slundberg/shap) python-package to get and visualize feature importances.
88

9-
* [Export CatBoost Model in JSON format Tutorial](model_analysis/model_export_as_json_tutorial.ipynb)
9+
* [Export CatBoost Model in JSON format Tutorial](./model_export_as_json_tutorial.ipynb)
1010
* This tutorial shows how to save catboost model in JSON format and apply it.
1111

12-
* [Visualization of CatBoost decision trees tutorial](model_analysis/visualize_decision_trees_tutorial.ipynb)
12+
* [Visualization of CatBoost decision trees tutorial](./visualize_decision_trees_tutorial.ipynb)
1313
* This tutorial shows how to visualize catboost decision trees.
1414

15-
* [Feature statistics tutorial](model_analysis/feature_statistics_tutorial.ipynb)
16-
* This tutorial shows how to calculate feature statistics for catboost model
15+
* [Feature statistics tutorial](./feature_statistics_tutorial.ipynb)
16+
* This tutorial shows how to calculate feature statistics for catboost model.

tools/README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
## Tools
22

3-
* [Gradient Boosting: CPU vs GPU](tools/google_colaboratory_cpu_vs_gpu_tutorial.ipynb)
4-
* This is a basic tutorial which shows how to run gradient boosting on CPU and GPU on Google Colaboratory.
3+
* [Gradient Boosting: CPU vs GPU](./google_colaboratory_cpu_vs_gpu_tutorial.ipynb)
4+
* This is a basic tutorial which shows how to run gradient boosting on CPU and GPU on Google Colaboratory.
55

6-
* [Regression on Gradient Boosting: CPU vs GPU](tools/google_colaboratory_cpu_vs_gpu_regression_tutorial.ipynb)
6+
* [Regression on Gradient Boosting: CPU vs GPU](./google_colaboratory_cpu_vs_gpu_regression_tutorial.ipynb)
77
* This is a basic tutorial which shows how to run regression on gradient boosting on CPU and GPU on Google Colaboratory.

0 commit comments

Comments
 (0)