I am getting a frequency error when useing Pandasdataset in DeepAREstimator. it is always giving an error. I attached the error below, #3170
subbarajugv
started this conversation in
General
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
from gluonts.mx import DeepAREstimator, Trainer
estimator = DeepAREstimator(
freq='H', prediction_length=24, trainer=Trainer(epochs=1)
)
predictor = estimator.train(ds)
predictions = predictor.predict(ds)
/home/subbi/miniforge3/lib/python3.10/site-packages/gluonts/time_feature/lag.py:104: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.
offset = to_offset(freq_str)
Exception Traceback (most recent call last)
Cell In[132], line 3
1 from gluonts.mx import DeepAREstimator, Trainer
----> 3 estimator = DeepAREstimator(
4 freq='H', prediction_length=24, trainer=Trainer(epochs=1)
5 )
6 predictor = estimator.train(ds)
7 predictions = predictor.predict(ds)
File ~/miniforge3/lib/python3.10/site-packages/gluonts/core/component.py:364, in validated..validator..init_wrapper(*args, **kwargs)
361 self.class.getnewargs_ex = validated_getnewargs_ex
362 self.class.repr = validated_repr
--> 364 return init(self, **all_args)
File ~/miniforge3/lib/python3.10/site-packages/gluonts/mx/model/deepar/_estimator.py:256, in DeepAREstimator.init(self, freq, prediction_length, trainer, context_length, num_layers, num_cells, cell_type, dropoutcell_type, dropout_rate, use_feat_dynamic_real, use_feat_static_cat, use_feat_static_real, cardinality, embedding_dimension, distr_output, scaling, lags_seq, time_features, num_parallel_samples, imputation_method, train_sampler, validation_sampler, dtype, alpha, beta, batch_size, default_scale, minimum_scale, impute_missing_values, num_imputation_samples, nonnegative_pred_samples)
247 self.embedding_dimension = (
248 embedding_dimension
249 if embedding_dimension is not None
250 else [min(50, (cat + 1) // 2) for cat in self.cardinality]
251 )
252 self.scaling = scaling
253 self.lags_seq = (
254 lags_seq
255 if lags_seq is not None
--> 256 else get_lags_for_frequency(freq_str=freq)
257 )
258 self.time_features = (
259 time_features
260 if time_features is not None
261 else time_features_from_frequency_str(freq)
262 )
264 self.history_length = self.context_length + max(self.lags_seq)
File ~/miniforge3/lib/python3.10/site-packages/gluonts/time_feature/lag.py:149, in get_lags_for_frequency(freq_str, lag_ub, num_lags, num_default_lags)
143 lags = (
144 _make_lags_for_second(offset.n)
145 + _make_lags_for_minute(offset.n / 60)
146 + _make_lags_for_hour(offset.n / (60 * 60))
147 )
148 else:
--> 149 raise Exception("invalid frequency")
151 # flatten lags list and filter
152 lags = [
153 int(lag) for sub_list in lags for lag in sub_list if 7 < lag <= lag_ub
154 ]
Exception: invalid frequency
Beta Was this translation helpful? Give feedback.
All reactions