|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | + |
| 18 | +""" |
| 19 | +The Potential Part Promotion query identifies suppliers who have an excess of a given part |
| 20 | +available; an excess is defined to be more than 50% of the parts like the given part that the |
| 21 | +supplier shipped in a given year for a given nation. Only parts whose names share a certain naming |
| 22 | +convention are considered. |
| 23 | +""" |
| 24 | + |
| 25 | +from datetime import datetime |
| 26 | +import pyarrow as pa |
| 27 | +from datafusion import SessionContext, col, lit, functions as F |
| 28 | + |
| 29 | +COLOR_OF_INTEREST = "forest" |
| 30 | +DATE_OF_INTEREST = "1994-01-01" |
| 31 | +NATION_OF_INTEREST = "CANADA" |
| 32 | + |
| 33 | +# Load the dataframes we need |
| 34 | + |
| 35 | +ctx = SessionContext() |
| 36 | + |
| 37 | +df_part = ctx.read_parquet("data/part.parquet").select_columns("p_partkey", "p_name") |
| 38 | +df_lineitem = ctx.read_parquet("data/lineitem.parquet").select_columns( |
| 39 | + "l_shipdate", "l_partkey", "l_suppkey", "l_quantity" |
| 40 | +) |
| 41 | +df_partsupp = ctx.read_parquet("data/partsupp.parquet").select_columns( |
| 42 | + "ps_partkey", "ps_suppkey", "ps_availqty" |
| 43 | +) |
| 44 | +df_supplier = ctx.read_parquet("data/supplier.parquet").select_columns( |
| 45 | + "s_suppkey", "s_address", "s_name", "s_nationkey" |
| 46 | +) |
| 47 | +df_nation = ctx.read_parquet("data/nation.parquet").select_columns( |
| 48 | + "n_nationkey", "n_name" |
| 49 | +) |
| 50 | + |
| 51 | +date = datetime.strptime(DATE_OF_INTEREST, "%Y-%m-%d").date() |
| 52 | + |
| 53 | +# Note: this is a hack on setting the values. It should be set differently once |
| 54 | +# https://github.com/apache/datafusion-python/issues/665 is resolved. |
| 55 | +interval = pa.scalar((0, 0, 365), type=pa.month_day_nano_interval()) |
| 56 | + |
| 57 | +# Filter down dataframes |
| 58 | +df_nation = df_nation.filter(col("n_name") == lit(NATION_OF_INTEREST)) |
| 59 | +df_part = df_part.filter( |
| 60 | + F.substr(col("p_name"), lit(0), lit(len(COLOR_OF_INTEREST) + 1)) |
| 61 | + == lit(COLOR_OF_INTEREST) |
| 62 | +) |
| 63 | + |
| 64 | +df = df_lineitem.filter(col("l_shipdate") >= lit(date)).filter( |
| 65 | + col("l_shipdate") < lit(date) + lit(interval) |
| 66 | +) |
| 67 | + |
| 68 | +# This will filter down the line items to the parts of interest |
| 69 | +df = df.join(df_part, (["l_partkey"], ["p_partkey"]), "inner") |
| 70 | + |
| 71 | +# Compute the total sold and limit ourselves to indivdual supplier/part combinations |
| 72 | +df = df.aggregate( |
| 73 | + [col("l_partkey"), col("l_suppkey")], [F.sum(col("l_quantity")).alias("total_sold")] |
| 74 | +) |
| 75 | + |
| 76 | +df = df.join( |
| 77 | + df_partsupp, (["l_partkey", "l_suppkey"], ["ps_partkey", "ps_suppkey"]), "inner" |
| 78 | +) |
| 79 | + |
| 80 | +# Find cases of excess quantity |
| 81 | +df.filter(col("ps_availqty") > lit(0.5) * col("total_sold")) |
| 82 | + |
| 83 | +# We could do these joins earlier, but now limit to the nation of interest suppliers |
| 84 | +df = df.join(df_supplier, (["ps_suppkey"], ["s_suppkey"]), "inner") |
| 85 | +df = df.join(df_nation, (["s_nationkey"], ["n_nationkey"]), "inner") |
| 86 | + |
| 87 | +# Restrict to the requested data per the problem statement |
| 88 | +df = df.select_columns("s_name", "s_address") |
| 89 | + |
| 90 | +df = df.sort(col("s_name").sort()) |
| 91 | + |
| 92 | +df.show() |
0 commit comments