@@ -17,12 +17,12 @@ __function__ BACK-PROP-LEARNING(_examples_, _network_) __returns__ a neural netw
17
17
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; __ for each__ node _ j_ in layer _ l_ __ do__
18
18
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; _ in<sub >j</sub >_ &larr ; &Sigma ; <sub >_ i_ </sub > _ w<sub >i,j</sub >_ _ a<sub >i</sub >_
19
19
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; _ a<sub >j</sub >_ &larr ; _ g_ (_ in<sub >j</sub >_ )
20
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& emsp ; /\* _ Propagate deltas backward from output layer to input layer_ \* /
21
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& emsp ; __ for each__ node _ j_ in the output layer __ do__
22
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& Delta ; \[ _ j_ \] &larr ; _ g_ &prime ; (_ in<sub >j</sub >_ ) × ; (_ y<sub >i</sub >_ &minus ; _ a<sub >j</sub >_ )
23
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& emsp ; __ for__ _ l_ = _ L_ &minus ; 1 __ to__ 1 __ do__
24
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& emsp ; __ for each__ node _ i_ in layer _ l_ __ do__
25
- &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;& emsp ;& Delta ; \[ _ i_ \] &larr ; _ g_ &prime ; (_ in<sub >i</sub >_ ) &Sigma ; <sub >_ j_ </sub > _ w<sub >i,j</sub >_ &Delta ; \[ _ j_ \]
20
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ; /\* _ Propagate deltas backward from output layer to input layer_ \* /
21
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ; __ for each__ node _ j_ in the output layer __ do__
22
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&Delta ; \[ _ j_ \] &larr ; _ g_ &prime ; (_ in<sub >j</sub >_ ) × ; (_ y<sub >i</sub >_ &minus ; _ a<sub >j</sub >_ )
23
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ; __ for__ _ l_ = _ L_ &minus ; 1 __ to__ 1 __ do__
24
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; __ for each__ node _ i_ in layer _ l_ __ do__
25
+ &emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&Delta ; \[ _ i_ \] &larr ; _ g_ &prime ; (_ in<sub >i</sub >_ ) &Sigma ; <sub >_ j_ </sub > _ w<sub >i,j</sub >_ &Delta ; \[ _ j_ \]
26
26
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; /\* _ Update every weight in network using deltas_ \* /
27
27
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; __ for each__ weight _ w<sub >i,j</sub >_ in _ network_ __ do__
28
28
&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ;&emsp ; _ w<sub >i,j</sub >_ &larr ; _ w<sub >i,j</sub >_ &plus ; _ &alpha ; _ × ; _ a<sub >i</sub >_ × ; &Delta ; \[ _ j_ \]
0 commit comments