Skip to content

Adapt performance degrades when using several consecuitive times #133

@mmorsy1981

Description

@mmorsy1981

I defined the following DANN models. The DANN model starts performing well, then the accuracy drops (under 0.1 for some cases) for both unadapted and adapted models. Can you explain this behavior and how to handle it. @antoinedemathelin @GRichard513 @AlejandrodelaConcha @BastienZim @atiqm

`def get_encoder():
inp = Input(shape=np.expand_dims(XA_env,-1).shape[1:], name="Signal_Stack")
x = BatchNormalization()(inp)
x = Dropout(0.2)(x)
x = Conv1D(H.shape[1], H.shape[-1], use_bias=False, padding='same', name='Conv1D_L0')(x)
x = Activation('tanh')(x)
x = GlobalMaxPooling1D()(x)
x = Dense(x.shape[-1], activation='relu')(x)
model = Model(inputs=[inp], outputs=[x])
return model

enc_out_shape = get_encoder().output_shape

def get_task():
inp = Input(shape= enc_out_shape[-1], name="Signal_Stack")
x = Dense(inp.shape[-1], activation='relu')(inp)
x = Dropout(0.2)(x)
x = Dense(num_classes, activation='softmax', name = 'OutputLayer')(x)
model = Model(inputs=[inp], outputs=[x])
return model

def get_discriminator():
inp = Input(shape= enc_out_shape[-1], name="Signal_Stack")
x = Dense(inp.shape[-1], activation='relu')(inp)
x = Dropout(0.2)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=[inp], outputs=[x])
return model

for i in range(4):
for j in range(4):
DANN_model = DANN(encoder = get_encoder(), discriminator = get_discriminator(), task = get_task(), lambda_=0.5)
DANN_model.compile(loss='categorical_crossentropy', optimizer=Adam(0.001), metrics=["acc"])
DANN_model.fit(X = X[i], y = y[i], Xt = X[j], batch_size=32, epochs=100, shuffle=True)
#X and y denote a partitioned dataset with domain shift between various partitions
print(i ,j, DANN_model.score(X[i], y[i], DANN_model.score(X[j], y[j]) `

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions