|
| 1 | +--- |
| 2 | +title: "Turing Library API" |
| 3 | +page-layout: full |
| 4 | +include-in-header: |
| 5 | + - text: | |
| 6 | + <style>a {text-decoration: none;}a:hover {text-decoration: underline;}</style> |
| 7 | +--- |
| 8 | + |
| 9 | +This page lists all the packages that are part of the [The Turing Organization](https://github.com/TuringLang). |
| 10 | + |
| 11 | +## Modelling Languages |
| 12 | + |
| 13 | +- [DynamicPPL.jl](https://turinglang.org/DynamicPPL.jl/): A domain-specific language and backend for probabilistic programming languages, used by Turing.jl. |
| 14 | + |
| 15 | +- [JuliaBUGS.jl](https://turinglang.org/JuliaBUGS.jl/): JuliaBUGS is a graph-based probabilistic programming language and a component of the Turing ecosystem. |
| 16 | + |
| 17 | +- [TuringGLM.jl](https://turinglang.org/TuringGLM.jl/): A Julia package for Bayesian generalized linear models used for returning an instantiated Turing model using the formula syntax |
| 18 | + |
| 19 | +## Markov chain Monte Carlo (MCMC) |
| 20 | + |
| 21 | +- [AdvancedHMC.jl](https://turinglang.org/AdvancedHMC.jl/): It provides a robust, modular, and efficient implementation of advanced Hamiltonian Monte Carlo (HMC) algorithms. |
| 22 | + |
| 23 | +- [AbstractMCMC.jl](https://turinglang.org/AbstractMCMC.jl/): Abstract types and interfaces for Markov chain Monte Carlo methods. This defines an interface for sampling and combining Markov chains. |
| 24 | + |
| 25 | +- [ThermodynamicIntegration.jl](https://github.com/theogf/ThermodynamicIntegration.jl): A simple package to compute Thermodynamic Integration for computing the evidence in a Bayesian setting. |
| 26 | + |
| 27 | +- [AdvancedPS.jl](https://turinglang.org/AdvancedPS.jl/): This is a lightweight package that implements particle based Monte Carlo algorithms for the [Turing](https://turinglang.org/) ecosystem. |
| 28 | + |
| 29 | +- [EllipticalSliceSampling.jl](https://turinglang.org/EllipticalSliceSampling.jl/): This package implements elliptical slice sampling in the Julia language, as described in [Murray, Adams & MacKay (2010)](http://proceedings.mlr.press/v9/murray10a/murray10a.pdf). |
| 30 | + |
| 31 | +- [NestedSamplers.jl](https://turinglang.org/NestedSamplers.jl/): A Julian implementation of single- and multi-ellipsoidal nested sampling algorithms using the [AbstractMCMC](https://github.com/turinglang/abstractmcmc.jl) interface. |
| 32 | + |
| 33 | +## Diagnostics |
| 34 | + |
| 35 | +- [MCMCChains.jl](https://turinglang.org/MCMCChains.jl/): Implementation of Julia types for summarizing MCMC simulations and utility functions for [diagnostics](https://turinglang.org/MCMCChains.jl/stable/diagnostics/#Diagnostics) and [visualizations](https://turinglang.org/MCMCChains.jl/stable/statsplots/#StatsPlots.jl). |
| 36 | + |
| 37 | +- [MCMCDiagnosticTools.jl](https://turinglang.org/MCMCDiagnosticTools.jl/): This package provides functionality for diagnosing samples generated using Markov Chain Monte Carlo. |
| 38 | + |
| 39 | +- [ParetoSmooth.jl](https://turinglang.org/ParetoSmooth.jl/): An implementation of Pareto smoothed importance sampling(PSIS) algorithms in Julia. |
| 40 | + |
| 41 | +## Bijectors.jl |
| 42 | + |
| 43 | +> [Bijectors.jl](https://turinglang.org/Bijectors.jl/): A package for transforming distributions, used by [Turing.jl](https://github.com/TuringLang/Turing.jl). |
| 44 | +
|
| 45 | +## TuringCallbacks.jl |
| 46 | + |
| 47 | +> [TuringCallbacks.jl](https://turinglang.org/TuringCallbacks.jl/): A package containing some convenient callbacks to use when you sample in [`Turing.jl`](https://app.codecov.io/gh/TuringLang/Turing.jl). |
| 48 | +
|
| 49 | +## TuringBenchmarking.jl |
| 50 | + |
| 51 | +> [TuringBenchmarking.jl](https://turinglang.org/TuringBenchmarking.jl/): A useful package for benchmarking and checking [`Turing.jl`](https://github.com/TuringLang/Turing.jl) models. |
| 52 | +
|
| 53 | +## Gaussion Processes |
| 54 | + |
| 55 | +- [AbstractGPs.jl](https://juliagaussianprocesses.github.io/AbstractGPs.jl): AbstractGPs.jl is a package that defines a low-level API for working with Gaussian processes (GPs), and basic functionality for working with them in the simplest cases. |
| 56 | + |
| 57 | +- [KernelFunctions.jl](https://juliagaussianprocesses.github.io/KernelFunctions.jl): Julia package for kernel functions for machine learning. |
| 58 | + |
| 59 | +- [ApproximateGPs.jl](https://juliagaussianprocesses.github.io/ApproximateGPs.jl): This is a package that provides some approximate inference algorithms for Gaussian process models, built on top of [AbstractGPs.jl](https://github.com/JuliaGaussianProcesses/AbstractGPs.jl). |
0 commit comments