[hide]
#I "../../out/lib/net40"
#r "MathNet.Numerics.dll"
#r "MathNet.Numerics.FSharp.dll"
open System.Numerics
open MathNet.Numerics
open MathNet.Numerics.LinearAlgebra
A system of linear equations is a collection of linear equations involving the same set of variables:
$$$ \begin{alignat}{7} 3x &; + ;& 2y &; - ;& z &; = ;& 1 & \ 2x &; - ;& 2y &; + ;& 4z &; = ;& -2 & \ -x &; + ;& \tfrac{1}{2} y &; - ;& z &; = ;& 0 & \end{alignat}
More generally, we can write
$$$ \begin{alignat}{7} a_{11} x_1 &&; + ;&& a_{12} x_2 &&; + \cdots + ;&& a_{1n} x_n &&; = ;&&& b_1 \ a_{21} x_1 &&; + ;&& a_{22} x_2 &&; + \cdots + ;&& a_{2n} x_n &&; = ;&&& b_2 \ \vdots;;; && && \vdots;;; && && \vdots;;; && &&& ;\vdots \ a_{m1} x_1 &&; + ;&& a_{m2} x_2 &&; + \cdots + ;&& a_{mn} x_n &&; = ;&&& b_m \ \end{alignat}
where we all parameters
This is a fundamental problem in the domain of linear algebra, and we can use its power to find the solution. Accordingly we can write the equivalent problem with matrices and vectors:
$$$ \mathbf{A}= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \vdots & \vdots & \ddots & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},\quad \mathbf{x}=\begin{bmatrix}x_1\x_2\ \vdots \x_n\end{bmatrix},\quad \mathbf{b}=\begin{bmatrix}b_1\b_2\ \vdots \b_m\end{bmatrix}
such that
$$$ \mathbf{A}\mathbf{x}=\mathbf{b}
The initial example system would then look like this:
$$$ \begin{bmatrix}3 & 2 & -1 \2 & -2 & 4 \-1 & \tfrac{1}{2} & -1\end{bmatrix} \begin{bmatrix}x\y\z\end{bmatrix} ;=; \begin{bmatrix}1\-2\0\end{bmatrix}
Which we can solve explicitly with the LU-decomposition, or simply by using the Solve method:
[lang=csharp]
var A = Matrix<double>.Build.DenseOfArray(new double[,] {
{ 3, 2, -1 },
{ 2, -2, 4 },
{ -1, 0.5, -1 }
});
var b = Vector<double>.Build.Dense(new double[] { 1, -2, 0 });
var x = A.Solve(b);
The resulting
In F# the syntax is a bit lighter:
[lang=fsharp]
let A = matrix [[ 3.0; 2.0; -1.0 ]
[ 2.0; -2.0; 4.0 ]
[ -1.0; 0.5; -1.0 ]]
let b = vector [ 1.0; -2.0; 0.0 ]
let x = A.Solve(b) // 1;-2;-2
In practice, a linear equation system to be solved is often not in the standard form required to use the linear algebra approach. For example, let's have a look at the following system:
$$$ \begin{bmatrix}1 & 2 & 3 & 4\2 & 3 & 4 & 5\3 & 4 & 5 & 6\4 & 5 & 6 & 7\end{bmatrix} \begin{bmatrix}0\0\V\T\end{bmatrix} ;=; \begin{bmatrix}F\M\20\0\end{bmatrix}
The first two values of the solution vector
$$$ \begin{bmatrix}3 & 4\4 & 5\5 & 6\6 & 7\end{bmatrix} \begin{bmatrix}V\T\end{bmatrix} ;=; \begin{bmatrix}F\M\20\0\end{bmatrix}
Then we need to subtract the two unknowns from the right side back from the left (so that they
become zero on the right side), by introducing a new column each. First we subtract
$$$ \begin{bmatrix}3 & 4 & -1\4 & 5 & 0\5 & 6 & 0\6 & 7 & 0\end{bmatrix} \begin{bmatrix}V\T\F\end{bmatrix} ;=; \begin{bmatrix}0\M\20\0\end{bmatrix}
Then we subtract
$$$ \begin{bmatrix}3 & 4 & -1 & 0\4 & 5 & 0 & -1\5 & 6 & 0 & 0\6 & 7 & 0 & 0\end{bmatrix} \begin{bmatrix}V\T\F\M\end{bmatrix} ;=; \begin{bmatrix}0\0\20\0\end{bmatrix}
Which is in standard from, so we can solve normally:
[lang=fsharp]
let A' = matrix [[ 3.0; 4.0; -1.0; 0.0 ]
[ 4.0; 5.0; 0.0; -1.0 ]
[ 5.0; 6.0; 0.0; 0.0; ]
[ 6.0; 7.0; 0.0; 0.0 ]]
let b' = vector [ 0.0; 0.0; 20.0; 0.0 ]
let x' = A'.Solve(b') // -140; 120; 60; 40