Skip to content

DimensionMismatch when adding a function to the neural network  #526

@xk-y

Description

@xk-y

Hi, I got an error when trying to add a function to the chain, and was wondering if there is any way to solve it. The code is following:

using DiffEqFlux, OrdinaryDiffEq, Flux
#Prepare true data
u0 = [2.;0.]
datasize = 30
tspan = (0.0f0,1.5f0)
function trueODEfunc(du,u,p,t)
    true_A = [-0.1 2.0; -2.0 -0.1]
    du .= ((u.^3)'true_A)'
end
t = range(tspan[1],tspan[2],length=datasize)
prob = ODEProblem(trueODEfunc,u0,tspan)
ode_data = Array(solve(prob,Tsit5(),saveat=t))

#build neural ode model
struct S
    a
    b
end
function (s::S)(x) 
    transpose(transpose(s.a) * s.b) * x
end
S(m::Integer,n::Integer, init=Flux.glorot_uniform) =  S(init(n,m),ones(n, n))
dudt = Chain(
             Dense(2,30,tanh),
             Dense(30,10),
             S(10,2)
             )
n_ode = NeuralODE(dudt,tspan,Tsit5(),saveat=t)

#prepare for the training
ps = Flux.params(dudt)
function predict_n_ode()
  Array(n_ode(u0))
end
loss_n_ode() = Flux.mse(ode_data,predict_n_ode())
loss_n_ode()#I got 2.5051380830609693
data = Iterators.repeated((), 2)
opt = ADAM(0.1)

#train the model
Flux.train!(loss_n_ode, ps, data, opt)
DimensionMismatch("array could not be broadcast to match destination")

Stacktrace:
 [1] check_broadcast_shape at .\broadcast.jl:520 [inlined]
 [2] check_broadcast_axes at .\broadcast.jl:523 [inlined]
 [3] instantiate at .\broadcast.jl:269 [inlined]
 [4] materialize! at .\broadcast.jl:848 [inlined]
 [5] materialize!(::SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}, ::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{1},Nothing,typeof(identity),Tuple{Array{Float64,1}}}) at .\broadcast.jl:845
 [6] _vecjacobian!(::SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}, ::Array{Float64,1}, ::SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}, ::Array{Float32,1}, ::Float32, ::DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}}, ::DiffEqSensitivity.ZygoteVJP, ::SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}, ::Nothing) at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\derivative_wrappers.jl:295
 [7] _vecjacobian! at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\derivative_wrappers.jl:194 [inlined]
 [8] #vecjacobian!#20 at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\derivative_wrappers.jl:147 [inlined]
 [9] (::DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}})(::Array{Float64,1}, ::Array{Float64,1}, ::Array{Float32,1}, ::Float32) at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\interpolating_adjoint.jl:90
 [10] ODEFunction at C:\Users\Administrator\.julia\packages\SciMLBase\10xNC\src\scimlfunctions.jl:334 [inlined]
 [11] initialize!(::OrdinaryDiffEq.ODEIntegrator{Tsit5,true,Array{Float64,1},Nothing,Float32,Array{Float32,1},Float32,Float64,Float32,Array{Array{Float64,1},1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},true,Array{Float32,1},ODEFunction{true,DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}},LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Symbol,CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}},Tuple{Symbol},NamedTuple{(:callback,),Tuple{CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}}}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{true,DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}},LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}}},DiffEqBase.DEStats},ODEFunction{true,DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}},LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},OrdinaryDiffEq.DEOptions{Float64,Float64,Float64,Float32,typeof(DiffEqBase.ODE_DEFAULT_NORM),typeof(LinearAlgebra.opnorm),Nothing,CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}},typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN),typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE),typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK),DataStructures.BinaryHeap{Float32,Base.Order.ForwardOrdering},DataStructures.BinaryHeap{Float32,Base.Order.ForwardOrdering},Nothing,Nothing,Int64,Array{Float32,1},Array{Float64,1},Tuple{}},Array{Float64,1},Float64,Nothing,OrdinaryDiffEq.DefaultInit}, ::OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}}) at C:\Users\Administrator\.julia\packages\OrdinaryDiffEq\5egkj\src\perform_step\low_order_rk_perform_step.jl:623
 [12] __init(::ODEProblem{Array{Float64,1},Tuple{Float32,Float32},true,Array{Float32,1},ODEFunction{true,DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}},LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Symbol,CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}},Tuple{Symbol},NamedTuple{(:callback,),Tuple{CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}}}}},SciMLBase.StandardODEProblem}, ::Tsit5, ::Tuple{}, ::Tuple{}, ::Tuple{}, ::Type{Val{true}}; saveat::Array{Float64,1}, tstops::Array{Float32,1}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}}, dense::Bool, calck::Bool, dt::Float32, dtmin::Nothing, dtmax::Float32, force_dtmin::Bool, adaptive::Bool, gamma::Rational{Int64}, abstol::Float64, reltol::Float64, qmin::Rational{Int64}, qmax::Int64, qsteady_min::Int64, qsteady_max::Int64, qoldinit::Rational{Int64}, fullnormalize::Bool, failfactor::Int64, beta1::Nothing, beta2::Nothing, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(LinearAlgebra.opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEq.DefaultInit, kwargs::Base.Iterators.Pairs{Symbol,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool},Tuple{Symbol},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}}) at C:\Users\Administrator\.julia\packages\OrdinaryDiffEq\5egkj\src\solve.jl:433
 [13] #__solve#404 at C:\Users\Administrator\.julia\packages\OrdinaryDiffEq\5egkj\src\solve.jl:4 [inlined]
 [14] solve_call(::ODEProblem{Array{Float64,1},Tuple{Float32,Float32},true,Array{Float32,1},ODEFunction{true,DiffEqSensitivity.ODEInterpolatingAdjointSensitivityFunction{DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats},Nothing,ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing}},LinearAlgebra.UniformScaling{Bool},Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Symbol,CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}},Tuple{Symbol},NamedTuple{(:callback,),Tuple{CallbackSet{Tuple{},Tuple{DiscreteCallback{DiffEqCallbacks.var"#61#64"{Array{Float32,1}},DiffEqCallbacks.var"#62#65"{DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},DiffEqCallbacks.var"#63#66"{typeof(DiffEqBase.INITIALIZE_DEFAULT),Bool,Array{Float32,1},DiffEqSensitivity.ReverseLossCallback{Array{Float64,1},Array{Float32,1},Array{Float64,1},Base.RefValue{Int64},LinearAlgebra.UniformScaling{Bool},DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon},DiffEqSensitivity.AdjointDiffCache{Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Base.OneTo{Int64},UnitRange{Int64},LinearAlgebra.UniformScaling{Bool}}}},typeof(DiffEqBase.FINALIZE_DEFAULT)}}}}}},SciMLBase.StandardODEProblem}, ::Tsit5; merge_callbacks::Bool, kwargs::Base.Iterators.Pairs{Symbol,Any,NTuple{7,Symbol},NamedTuple{(:save_everystep, :save_start, :saveat, :tstops, :abstol, :reltol, :sense),Tuple{Bool,Bool,Array{Float64,1},Array{Float32,1},Float64,Float64,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}}) at C:\Users\Administrator\.julia\packages\DiffEqBase\rN9Px\src\solve.jl:61
 [15] #solve_up#58 at C:\Users\Administrator\.julia\packages\DiffEqBase\rN9Px\src\solve.jl:82 [inlined]
 [16] #solve#57 at C:\Users\Administrator\.julia\packages\DiffEqBase\rN9Px\src\solve.jl:70 [inlined]
 [17] _adjoint_sensitivities(::ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats}, ::DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool}, ::Tsit5, ::DiffEqSensitivity.var"#df#146"{Array{Float64,2},Array{Float64,1},Colon}, ::Array{Float32,1}, ::Nothing; abstol::Float64, reltol::Float64, checkpoints::Array{Float32,1}, corfunc_analytical::Nothing, callback::Nothing, kwargs::Base.Iterators.Pairs{Symbol,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool},Tuple{Symbol},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}}) at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\sensitivity_interface.jl:28
 [18] adjoint_sensitivities(::ODESolution{Float64,2,Array{Array{Float64,1},1},Nothing,Nothing,Array{Float32,1},Array{Array{Array{Float64,1},1},1},ODEProblem{Array{Float64,1},Tuple{Float32,Float32},false,Array{Float32,1},ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},SciMLBase.StandardODEProblem},Tsit5,OrdinaryDiffEq.InterpolationData{ODEFunction{false,DiffEqFlux.var"#dudt_#87"{NeuralODE{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}},Array{Float32,1},Flux.var"#61#63"{Chain{Tuple{Dense{typeof(tanh),Array{Float32,2},Array{Float32,1}},Dense{typeof(identity),Array{Float32,2},Array{Float32,1}},S}}},Tuple{Float32,Float32},Tuple{Tsit5},Base.Iterators.Pairs{Symbol,StepRangeLen{Float32,Float64,Float64},Tuple{Symbol},NamedTuple{(:saveat,),Tuple{StepRangeLen{Float32,Float64,Float64}}}}}},LinearAlgebra.UniformScaling{Bool},Nothing,typeof(DiffEqFlux.basic_tgrad),Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,typeof(SciMLBase.DEFAULT_OBSERVED),Nothing},Array{Array{Float64,1},1},Array{Float32,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float32}},DiffEqBase.DEStats}, ::Tsit5, ::Vararg{Any,N} where N; sensealg::DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool}, kwargs::Base.Iterators.Pairs{Symbol,Union{Nothing, DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}},Tuple{Symbol,Symbol},NamedTuple{(:callback, :sense),Tuple{Nothing,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}}) at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\sensitivity_interface.jl:6
 [19] (::DiffEqSensitivity.var"#adjoint_sensitivity_backpass#145"{Base.Iterators.Pairs{Symbol,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool},Tuple{Symbol},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}},Tsit5,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},Array{Float32,1},Tuple{},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}},Colon})(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\DiffEqSensitivity\agdxc\src\concrete_solve.jl:179
 [20] #263#back at C:\Users\Administrator\.julia\packages\ZygoteRules\OjfTt\src\adjoint.jl:65 [inlined]
 [21] #178 at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\lib\lib.jl:194 [inlined]
 [22] (::Zygote.var"#1698#back#180"{Zygote.var"#178#179"{DiffEqBase.var"#263#back#74"{DiffEqSensitivity.var"#adjoint_sensitivity_backpass#145"{Base.Iterators.Pairs{Symbol,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool},Tuple{Symbol},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}}},Tsit5,DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},Bool,Bool},Array{Float64,1},Array{Float32,1},Tuple{},NamedTuple{(:sense,),Tuple{DiffEqSensitivity.InterpolatingAdjoint{0,true,Val{:central},DiffEqSensitivity.ZygoteVJP,Bool}}},Colon}},Tuple{NTuple{6,Nothing},Tuple{Nothing}}}})(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\ZygoteRules\OjfTt\src\adjoint.jl:59
 [23] #solve#57 at C:\Users\Administrator\.julia\packages\DiffEqBase\rN9Px\src\solve.jl:70 [inlined]
 [24] (::typeof((#solve#57)))(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [25] (::Zygote.var"#178#179"{typeof((#solve#57)),Tuple{NTuple{6,Nothing},Tuple{Nothing}}})(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\lib\lib.jl:194
 [26] (::Zygote.var"#1698#back#180"{Zygote.var"#178#179"{typeof((#solve#57)),Tuple{NTuple{6,Nothing},Tuple{Nothing}}}})(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\ZygoteRules\OjfTt\src\adjoint.jl:59
 [27] (::typeof((solve##kw)))(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [28] (::Zygote.var"#178#179"{typeof((solve##kw)),Tuple{Tuple{Nothing,Nothing,Nothing},Tuple{Nothing}}})(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\lib\lib.jl:194
 [29] #1698#back at C:\Users\Administrator\.julia\packages\ZygoteRules\OjfTt\src\adjoint.jl:59 [inlined]
 [30] NeuralODE at C:\Users\Administrator\.julia\packages\DiffEqFlux\dYHZU\src\neural_de.jl:69 [inlined]
 [31] (::typeof((λ)))(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [32] NeuralODE at C:\Users\Administrator\.julia\packages\DiffEqFlux\dYHZU\src\neural_de.jl:65 [inlined]
 [33] (::typeof((λ)))(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [34] predict_n_ode at .\In[4]:3 [inlined]
 [35] (::typeof((predict_n_ode)))(::Array{Float64,2}) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [36] loss_n_ode at .\In[4]:5 [inlined]
 [37] (::typeof((loss_n_ode)))(::Float64) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface2.jl:0
 [38] #178 at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\lib\lib.jl:194 [inlined]
 [39] #1698#back at C:\Users\Administrator\.julia\packages\ZygoteRules\OjfTt\src\adjoint.jl:59 [inlined]
 [40] #39 at C:\Users\Administrator\.julia\packages\Flux\lwA90\src\optimise\train.jl:102 [inlined]
 [41] (::Zygote.var"#69#70"{Zygote.Params,Zygote.Context,typeof((#39))})(::Float64) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface.jl:252
 [42] gradient(::Function, ::Zygote.Params) at C:\Users\Administrator\.julia\packages\Zygote\lwmfx\src\compiler\interface.jl:59
 [43] macro expansion at C:\Users\Administrator\.julia\packages\Flux\lwA90\src\optimise\train.jl:101 [inlined]
 [44] macro expansion at C:\Users\Administrator\.julia\packages\Juno\n6wyj\src\progress.jl:134 [inlined]
 [45] train!(::Function, ::Zygote.Params, ::Base.Iterators.Take{Base.Iterators.Repeated{Tuple{}}}, ::ADAM; cb::Flux.Optimise.var"#40#46") at C:\Users\Administrator\.julia\packages\Flux\lwA90\src\optimise\train.jl:99
 [46] train!(::Function, ::Zygote.Params, ::Base.Iterators.Take{Base.Iterators.Repeated{Tuple{}}}, ::ADAM) at C:\Users\Administrator\.julia\packages\Flux\lwA90\src\optimise\train.jl:97
 [47] top-level scope at In[6]:4
 [48] include_string(::Function, ::Module, ::String, ::String) at .\loading.jl:1091

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions