|
| 1 | +# 遗传算法 |
| 2 | + |
| 3 | +## 核心步骤 |
| 4 | + |
| 5 | +- 初始化种群:首先,随机生成一个包含多个个体(解)的初始种群。每个个体都代表问题的一个可能解。 |
| 6 | +- 适应度评估:对种群中的每个个体进行适应度评估,即计算每个个体的适应度分数,该分数表示个体对于问题的解决方案的优劣程度。 |
| 7 | +- 选择:根据适应度分数选择个体,通常是根据适应度分数的高低进行概率性选择,以便更有可能选择到适应度高的个体。常用的选择方法包括轮盘赌选择、锦标赛选择等。 |
| 8 | +- 交叉:从被选择的个体中选取一对(或多对)进行交叉操作,生成新的个体。交叉操作模拟了生物界的基因交换过程,可以通过不同的方式进行,如单点交叉、多点交叉、均匀交叉等。 |
| 9 | +- 变异:对交叉后的个体进行变异操作,以保持种群的多样性。变异操作是随机改变个体染色体中的一些基因,以产生新的解。常见的变异操作包括基因翻转、基因位移、基因重组等。 |
| 10 | +- 替换:用新生成的个体替换原来的个体,形成新一代种群。替换策略可以是全局替换(直接用新生成的个体替换原有种群)或局部替换(保留一部分原有个体,只替换其中一部分)。 |
| 11 | +- 重复迭代:重复执行步骤 2 到步骤 6,直到达到停止条件(如达到最大迭代次数、找到满意的解等)为止。 |
| 12 | +- 输出结果:在停止迭代后,输出最终的优化结果,通常是种群中适应度最高的个体所对应的解。 |
| 13 | + |
| 14 | +```mermaid |
| 15 | +graph TD |
| 16 | + A[初始化种群] --> B[适应度评估] |
| 17 | + B --> C[选择] |
| 18 | + C --> D[交叉] |
| 19 | + D --> E[变异] |
| 20 | + E --> F[替换] |
| 21 | + F --> G{满足停止条件?} |
| 22 | + G -->|是| H[输出结果] |
| 23 | + G -->|否| B |
| 24 | +``` |
| 25 | + |
| 26 | +## 案例代码 |
| 27 | + |
| 28 | +```python |
| 29 | +import numpy |
| 30 | +import math |
| 31 | +import random |
| 32 | + |
| 33 | +# 确定一个目标函数, _max=True表示目标最大值,反之最小值 |
| 34 | +def objectiveFunc(x : numpy.ndarray, _max : bool = True) -> numpy.ndarray: # _max表示目标最大值,反之最小值 |
| 35 | + d = x * numpy.sin(2 * x) - 5 * x * numpy.cos(x * 2) |
| 36 | + return d if _max else -1 * d |
| 37 | + |
| 38 | +# 基于均匀分布随机生成种群 |
| 39 | +def genPop(size : int, start : float, end : float) -> numpy.ndarray: |
| 40 | + return numpy.random.uniform(start, end, size) |
| 41 | + |
| 42 | +# 选择操作,根据method指定的策略来,默认是轮盘赌方式,可以拓展 |
| 43 | +def select(pop : numpy.ndarray, size : int, method : str = '轮盘赌', _max : bool = True) -> numpy.ndarray: |
| 44 | + obj = objectiveFunc(pop, _max) |
| 45 | + match method: |
| 46 | + case '轮盘赌': |
| 47 | + minObj = numpy.abs(numpy.min(obj)) # 用于修正 |
| 48 | + obj += minObj |
| 49 | + posible = obj / numpy.sum(obj) |
| 50 | + return numpy.random.choice(pop, size, p=posible, replace=False) # False无放回抽样 |
| 51 | + case _: |
| 52 | + ... |
| 53 | + |
| 54 | +# 编码方式 |
| 55 | +def encode(x: float, start: float, end: float, step: int = 100) -> str: |
| 56 | + """ |
| 57 | + 把数据平分成step份,然后x落在哪部分,获取对应的二进制值 |
| 58 | + :param x: |
| 59 | + :param start: |
| 60 | + :param end: |
| 61 | + :param step: |
| 62 | + :return: |
| 63 | + """ |
| 64 | + # 先确定二进制范围同时也规定了统一二进制长度,不够补全0 |
| 65 | + range_bin = math.ceil(math.log2(step)) # 2^0 ~ 2^range_bin继续写 |
| 66 | + |
| 67 | + # 计算每个区间的长度 |
| 68 | + interval_length = (end - start) / step |
| 69 | + |
| 70 | + # 确定 x 属于哪个区间 |
| 71 | + bin_index = min(int((x - start) / interval_length), step - 1) |
| 72 | + |
| 73 | + # 将区间索引转换为二进制字符串 |
| 74 | + bin_str = bin(bin_index)[2:].zfill(range_bin) |
| 75 | + |
| 76 | + return bin_str |
| 77 | + |
| 78 | +# 与编码方式对应的解码方式,有瑕疵,因为精度问题 |
| 79 | +def decode(bin_str: str, start: float, end: float, step: int = 100) -> float: |
| 80 | + """ |
| 81 | + 将二进制字符串解码为原始数值 |
| 82 | + :param bin_str: |
| 83 | + :param start: |
| 84 | + :param end: |
| 85 | + :param step: |
| 86 | + :return: |
| 87 | + """ |
| 88 | + # 先确定二进制范围同时也规定了统一二进制长度 |
| 89 | + range_bin = math.ceil(math.log2(step)) |
| 90 | + |
| 91 | + # 将二进制字符串转换为区间索引 |
| 92 | + bin_index = int(bin_str, 2) |
| 93 | + |
| 94 | + # 计算每个区间的长度 |
| 95 | + interval_length = (end - start) / step |
| 96 | + |
| 97 | + # 根据区间索引计算值 |
| 98 | + decoded_value = start + bin_index * interval_length + interval_length / 2 |
| 99 | + |
| 100 | + if decoded_value < -4: |
| 101 | + decoded_value = -4 |
| 102 | + elif decoded_value > 4: |
| 103 | + decoded_value = 4 |
| 104 | + else: |
| 105 | + pass |
| 106 | + |
| 107 | + return decoded_value |
| 108 | + |
| 109 | +# 交叉策略 |
| 110 | +# 随机从某点开始连续交叉,用random;交叉默认method方式是的第一个跟第二个交叉,第二个跟第三个交叉,以此类推; |
| 111 | +# 交叉的时候采用格外策略:每两个交叉的时候生成1~5个新数据用于填放到新种群,最后在新种群中调用选择选择算法 |
| 112 | +# length也采用随机策略,可以不定个数交叉, range(1, 3)表示1、2、3个交叉的任意一种 |
| 113 | +# 而且在生成1~5个新数据是有概率的{1 : 0.75, 2 : 0.2, 3 : 0.03, 4 : 0.015, 5 : 0.005} |
| 114 | +# 注意:起点+length一定不会超过编码长度 |
| 115 | +# method指定交叉方式,可以另行拓展 |
| 116 | +def cross( |
| 117 | + start: float, end: float, step: int, size: int, |
| 118 | + pop: numpy.ndarray, length: range, method: str = '1-2 2-3 ...', _max : bool = True |
| 119 | +) -> numpy.ndarray: |
| 120 | + newGensCodes = [] |
| 121 | + # {1 : 0.75, 2 : 0.2, 3 : 0.03, 4 : 0.015, 5 : 0.005} |
| 122 | + lastGenCode = [encode(g, start, end, step) for g in pop] |
| 123 | + mexBinCodeLen: int = math.ceil(math.log2(step)) |
| 124 | + for i in range(len(lastGenCode) - 1): |
| 125 | + p1 = list(lastGenCode[i]) |
| 126 | + p2 = list(lastGenCode[1 + i]) |
| 127 | + haveGenNumbers = numpy.random.choice(numpy.arange(1, 6), size=1, p=[.75, .2, .03, .015, .005])[0] |
| 128 | + # print(haveGenNumbers) |
| 129 | + for j in range(haveGenNumbers): |
| 130 | + random_location = numpy.random.randint( |
| 131 | + 0, mexBinCodeLen - random.randint(length.start, length.stop + 1) |
| 132 | + ) |
| 133 | + # print(f'random_location = {random_location}') |
| 134 | + # print(f'p1 = {p1}') |
| 135 | + # 交叉得到的两个父类另起变量名字,根据策略当孩子 |
| 136 | + for k in range(0, random_location, 1): |
| 137 | + p1[k], p2[k] = p2[k], p1[k] |
| 138 | + # 二者选一入新生代 |
| 139 | + p11 = ''.join(p1) |
| 140 | + p21 = ''.join(p2) |
| 141 | + newGensCodes.append(random.choice([p11, p21])) |
| 142 | + returnewGens = [decode(i, start, end, step) for i in newGensCodes] |
| 143 | + return select(numpy.array(returnewGens), size, _max=_max) |
| 144 | + |
| 145 | +# 变异策略,这里更改随机位置的基因 |
| 146 | +def mutations(pop : numpy.ndarray, start: float, end: float, step: int) -> numpy.ndarray: |
| 147 | + mexBinCodeLen : int = math.ceil(math.log2(step)) |
| 148 | + lastGenCodeLists = [list(encode(g, start, end, step)) for g in pop] |
| 149 | + k = [] |
| 150 | + g : list |
| 151 | + for g in lastGenCodeLists: |
| 152 | + for i in range(math.ceil(step / pop.size)): # 保证原种群大小不变 |
| 153 | + _s = g[random.randint(0, mexBinCodeLen - 1)] |
| 154 | + s = g.copy() |
| 155 | + s[random.randint(0, mexBinCodeLen - 1)] = '0' if _s == '1' else '1' |
| 156 | + k.append(s) |
| 157 | + return numpy.array( |
| 158 | + [decode(d, start, end, step) for d in [''.join(g) for g in k]] |
| 159 | + ) |
| 160 | + |
| 161 | + |
| 162 | +# 迭代100次试试(即模拟一个种群演变了100代) |
| 163 | +_genPop = genPop(1000, -4, 4) |
| 164 | +for i in range(100): |
| 165 | + _select = select(_genPop, 100, _max=True) |
| 166 | + _cross = cross(-4, 4, 1000, 100, _select, range(1, 3)) |
| 167 | + _mutations = mutations(_cross, -4, 4, 1000) |
| 168 | + _genPop = _mutations |
| 169 | +print(_genPop) |
| 170 | + |
| 171 | + |
| 172 | +""" |
| 173 | +[-3.428 -3.428 -3.3 -3.428 -3.94 -1.38 -3.94 -1.38 -3.428 -2.404 |
| 174 | + -3.364 -3.364 -3.428 -2.34 -3.364 0.732 -3.428 -3.364 -3.38 -3.372 |
| 175 | + -3.212 -3.18 0.916 -3.436 -3.18 -2.156 -3.18 -3.18 -3.18 -3.18 |
| 176 | + -3.052 -3.324 -3.196 -3.052 -3.052 -3.06 -3.052 -3.068 -3.068 -3.052 |
| 177 | + -3.172 -3.172 -1.124 -3.188 0.924 -3.172 -3.172 -3.18 -3.684 -3.684 |
| 178 | + -3.148 -3.02 -3.084 -2.988 -3.02 -0.972 -0.972 -3.02 -3.148 -3.276 |
| 179 | + -3.444 -3.364 -3.38 -3.38 -3.38 0.716 -1.332 -3.38 -3.38 -3.38 |
| 180 | + -3.284 -3.284 -3.284 -3.284 -3.284 -3.348 0.812 -3.284 -3.796 -3.284 |
| 181 | + -3.14 -2.372 0.7 -3.396 -3.364 -3.396 -3.908 0.7 -3.396 -3.404 |
| 182 | + -3.38 -3.26 -3.252 -3.236 0.844 0.844 -2.228 -3.252 -3.252 -3.252 |
| 183 | + -3.236 -3.372 -3.244 -1.196 -3.244 -3.276 -3.244 -3.244 -3.756 -2.988 |
| 184 | + -3.204 -3.204 -3.204 -3.172 -2.18 -3.204 -3.14 -1.156 -3.204 -3.204 |
| 185 | + -2.996 -3.252 -3.252 -3.252 -3.38 -3.764 -3.252 -3.252 -3.764 -2.996 |
| 186 | + -3.556 -0.996 -3.044 -3.044 -3.172 -3.044 -3.044 -3.044 -3.044 -3.052 |
| 187 | + -3.476 -3.348 -3.86 -3.348 -3.348 -3.348 -3.348 -3.348 0.748 -1.3 |
| 188 | + -3.06 -3.06 -3.044 -3.044 -3.068 -3.06 -3.06 -2.996 -3.092 -3.06 |
| 189 | + -3.188 -2.164 -3.22 -3.188 -3.188 -3.188 -3.444 -3.188 -3.188 -3.188 |
| 190 | + -3.908 -3.396 0.7 -2.372 -3.396 0.7 0.7 -3.14 -2.372 -3.404 |
| 191 | + -3.236 -3.236 -3.236 -3.236 -2.212 -3.3 -3.236 -3.244 -3.236 -1.188 |
| 192 | + -3.244 -3.244 -3.756 -3.244 -3.236 -3.244 -3.244 -3.244 -3.244 -3.244 |
| 193 | + -3.308 -3.308 -3.052 -3.308 -3.308 -3.244 -3.308 -3.308 -3.308 -3.308 |
| 194 | + -1.14 0.908 -3.188 -3.188 -3.188 -3.188 -3.124 -3.188 -3.188 -3.188 |
| 195 | + -3.052 -3.3 -3.308 -3.308 -3.3 -3.308 -3.82 -3.308 -3.308 -3.308 |
| 196 | + -2.724 -3.764 -3.764 -3.492 -3.492 -3.748 -3.236 -3.748 -3.748 -3.748 |
| 197 | + -3.444 -3.316 -3.316 -1.396 -1.396 -3.428 -2.42 -3.38 -3.188 -3.444 |
| 198 | + -2.028 -3.18 -3.052 -3.052 -3.564 -3.052 -3.052 1.044 -3.052 -3.052 |
| 199 | + -3.204 -3.204 -3.204 -3.204 -3.204 -3.204 -2.18 -3.076 -3.204 -3.204 |
| 200 | + -2.02 -3.044 -2.02 -3.076 -3.076 -3.044 -0.996 -3.044 -3.076 -3.044 |
| 201 | + -3.108 -3.364 -2.34 -3.364 -3.38 -3.364 -3.876 -3.428 -3.364 -1.316 |
| 202 | + -3.428 -3.46 -3.364 -3.428 -3.3 -3.428 -3.444 -3.428 -3.428 -3.3 |
| 203 | + -3.244 -2.988 -3.244 -3.244 -3.244 -3.244 -3.244 0.852 -3.244 -3.244 |
| 204 | + -3.364 -3.372 -2.348 -3.372 -3.372 -2.348 -2.348 -3.388 -3.372 -1.324 |
| 205 | + -3.364 -3.364 -3.876 -3.876 -3.364 -3.364 0.732 -3.364 -3.372 -3.364 |
| 206 | + -3.444 -1.268 -3.316 -3.316 -3.316 -3.316 -3.316 -3.252 -2.292 -3.316 |
| 207 | + -3.412 -3.284 -3.284 -3.252 -3.412 0.812 0.812 -3.284 -2.26 -2.26 |
| 208 | + -3.372 -3.436 -3.372 -3.116 -3.364 -3.404 -3.372 -3.372 -3.244 -3.372 |
| 209 | + -3.26 0.844 -3.252 -3.252 0.844 -3.26 -3.252 -3.26 -3.252 -3.252 |
| 210 | + 1.036 -3.092 -3.06 -1.012 -3.188 -3.572 -3.06 -3.06 -3.06 -3.06 |
| 211 | + -2.98 -2.212 -3.236 -3.236 -3.748 -3.268 -3.236 -3.3 -3.236 -3.244 |
| 212 | + -3.068 -3.068 -3.068 -3.068 -3.068 -3.324 1.028 1.028 -3.052 -3.068 |
| 213 | + -3.236 -3.236 -3.236 -2.98 -3.748 -3.236 -3.3 -3.236 -3.236 -2.98 |
| 214 | + -3.244 -3.372 -3.884 -3.372 -3.884 -3.372 0.724 -3.372 -3.244 -3.372 |
| 215 | + -3.06 -3.044 -2.02 -3.172 -3.044 -3.3 -3.556 -3.3 -3.044 -3.044 |
| 216 | + -3.332 -3.268 -3.268 -3.268 -3.268 -3.268 -3.268 -3.276 -3.396 -3.268 |
| 217 | + -3.316 -3.316 -3.828 -3.316 -3.316 -3.316 -3.316 -3.316 0.78 -3.316 |
| 218 | + -3.268 -3.396 -3.396 -3.396 -3.364 -3.396 -3.412 -3.46 -1.348 -3.46 |
| 219 | + -3.236 -3.364 -3.236 -3.748 -2.98 -3.236 -3.236 -3.748 -3.236 -3.236 |
| 220 | + -3.284 -3.292 -3.284 -3.292 -1.244 -3.26 -3.276 -3.292 0.804 -3.292 |
| 221 | + -3.3 -3.812 -3.3 -3.3 -3.3 -3.3 -3.3 0.796 -3.332 -3.428 |
| 222 | + -3.5 -3.5 -2.988 -2.988 -3.244 -2.988 -2.988 -2.988 -2.988 -3.02 |
| 223 | + -3.38 -3.252 -3.252 -3.252 -3.252 -1.204 -3.284 -3.252 -2.996 -3.284 |
| 224 | + -3.348 -3.316 -3.348 -3.348 -3.348 -3.86 -1.3 -1.3 -3.316 -3.348 |
| 225 | + -3.836 -3.812 -3.316 -1.78 -3.572 -3.828 -3.764 -3.316 -3.316 -2.804 |
| 226 | + -3.188 -3.188 -3.444 0.652 -3.38 -2.42 -3.188 -3.316 -2.42 -3.316 |
| 227 | + -3.316 -3.444 -3.316 -3.324 0.78 -3.3 -2.292 -3.3 -1.268 -3.252 |
| 228 | + -3.292 0.804 -3.292 -1.244 -1.244 -3.804 -3.276 -3.036 -3.292 -3.292 |
| 229 | + -3.012 -3.076 -3.028 -3.076 -3.14 -3.524 -2.98 -3.012 -3.012 -1.988 |
| 230 | + -3.188 -3.124 0.908 0.908 -3.06 -3.188 -3.188 -3.7 -1.14 -3.188 |
| 231 | + -3.316 -3.324 -3.252 -3.316 -3.316 -3.316 -3.316 -3.316 -3.324 -3.316 |
| 232 | + -2.164 -3.188 -3.172 -3.444 -3.444 -3.444 -3.196 -3.188 -3.188 -2.164 |
| 233 | + -1.268 -3.316 -3.316 -3.316 -3.3 -3.316 -1.268 -3.252 -3.316 -3.316 |
| 234 | + -3.572 -1.012 -3.06 -3.044 -3.06 -3.044 -3.572 -3.316 -3.06 -3.06 |
| 235 | + -3.428 -3.428 -3.428 -3.3 -3.364 0.668 -3.364 -3.428 -1.38 0.668 |
| 236 | + -3.348 -3.348 -3.348 -3.348 -3.348 -3.284 -3.284 -3.348 -3.316 -3.284 |
| 237 | + -1.22 -1.284 -1.22 -1.188 -1.348 -1.22 -1.188 -1.22 -1.188 -1.22 |
| 238 | + -3.012 -3.012 -3.02 -3.012 -3.028 -3.012 -3.012 -3.012 -3.524 -3.012 |
| 239 | + -3.316 -3.348 -3.348 -3.284 -3.348 -3.332 -3.348 -3.476 -3.092 -2.324 |
| 240 | + -3.076 -3.076 -1.028 -3.084 -3.076 1.02 -2.052 -3.076 -3.076 -3.076 |
| 241 | + -3.028 -3.028 -2.996 -3.028 -3.028 -3.54 -2.996 -2.004 -3.028 -0.98 |
| 242 | + -3.444 -3.316 -3.316 -2.292 -3.316 -3.828 0.78 -2.292 -3.316 -3.348 |
| 243 | + -3.188 -3.188 -3.188 -3.124 -3.188 -2.164 -3.196 -3.188 -3.22 -3.188 |
| 244 | + -3.076 -3.044 -3.044 -3.044 -3.172 -3.06 -3.044 -3.044 -3.3 -3.556 |
| 245 | + -3.044 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.428 -3.3 0.796 |
| 246 | + -3.188 -3.124 -3.7 -3.188 -2.164 -3.188 -3.7 -1.14 -3.188 -3.444 |
| 247 | + -3.764 -3.38 -3.236 -3.252 -3.252 -3.316 -2.996 -3.252 -3.38 -3.236 |
| 248 | + -3.308 -3.3 -3.3 -3.3 -3.3 -3.3 -3.308 -3.3 -3.3 -1.252 |
| 249 | + -3.18 0.924 0.924 -3.428 -3.172 -3.172 -3.108 -2.148 -2.148 -3.172 |
| 250 | + -3.252 -2.356 -3.38 -3.892 -3.252 0.716 -3.38 -3.38 -3.38 0.716 |
| 251 | + -3.188 -3.38 -3.444 -3.956 -3.444 -3.452 -3.428 -3.444 -3.316 0.652 |
| 252 | + -3.068 -3.068 -3.068 -3.068 1.028 -3.052 -3.068 -3.004 -3.068 -3.068 |
| 253 | + -3.1 -1.02 -3.068 -3.068 -3.068 -2.044 -3.052 -3.068 -3.068 -3.58 |
| 254 | + -2.98 -2.98 -3.492 -2.996 -1.956 -3.492 -2.98 -3.108 1.116 -3.044 |
| 255 | + -3.236 -3.236 -2.212 -3.364 -3.364 -3.236 -3.748 -3.236 -3.748 -3.236 |
| 256 | + -2.18 -2.18 -3.204 -2.18 -3.172 -3.204 -3.204 -3.204 -2.18 -1.156 |
| 257 | + -3.324 -3.316 -3.316 -1.268 -3.444 -3.324 -3.828 -3.316 -3.316 -3.316 |
| 258 | + -3.06 -3.06 -2.996 -3.06 -3.06 -3.092 -3.044 -3.092 -2.036 -3.092 |
| 259 | + -3.044 0.796 -3.236 -3.3 -3.3 -1.252 -3.308 0.796 -3.3 -3.3 |
| 260 | + -3.3 -3.3 -3.3 -3.044 -3.044 -3.3 -3.3 -3.3 -3.3 -3.308 |
| 261 | + -3.236 -3.3 -3.244 -3.236 -3.236 -3.236 -3.252 -3.748 -3.236 -3.3 |
| 262 | + -2.004 -3.028 -2.996 -3.028 -3.028 -3.028 -2.996 -3.028 -3.028 -3.028 |
| 263 | + -3.028 -3.036 -2.996 1.068 -0.98 -3.028 -3.028 -2.996 -3.012 -3.156 |
| 264 | + 0.844 -2.228 -3.252 -3.316 -3.26 -3.764 -2.228 -3.252 -3.316 -3.252 |
| 265 | + -3.092 -3.092 -3.092 -3.092 -3.092 -3.092 1.004 -3.348 -3.076 -2.068 |
| 266 | + -3.444 -3.444 -3.444 -3.428 -3.444 -3.38 -3.444 -3.444 -3.452 -1.396 |
| 267 | + -3.396 -3.46 -2.372 0.7 -3.396 -3.396 -3.412 -3.412 -3.268 -3.14 |
| 268 | + -3.428 -3.364 -3.364 -2.34 -3.396 -3.364 -1.316 -3.364 -3.364 -3.364 |
| 269 | + -3.044 -3.044 1.052 -3.3 -3.044 -3.044 -3.044 -3.044 -0.996 -3.044 |
| 270 | + -3.332 -3.092 -3.348 -3.348 -3.348 -2.324 -3.316 -3.316 -3.348 -1.3 |
| 271 | + -3.06 -2.996 -3.06 -3.572 -3.06 -3.06 -3.188 -2.036 -3.06 -3.188 |
| 272 | + -2.988 0.852 -1.196 -3.756 -3.244 -3.244 -3.244 -3.244 -2.22 -2.988] |
| 273 | +""" |
| 274 | +``` |
| 275 | + |
| 276 | +## 可视化结果分布 |
| 277 | + |
| 278 | +```python |
| 279 | +import matplotlib.pyplot as plt |
| 280 | +plt.hist(_genPop, bins=30, color='skyblue', edgecolor='black') |
| 281 | +plt.xlabel('Value X') |
| 282 | +plt.ylabel('Frequency') |
| 283 | +plt.title('Population Distribution') |
| 284 | +plt.grid(True) |
| 285 | +plt.show() |
| 286 | +``` |
| 287 | + |
| 288 | +### 分布图 |
| 289 | + |
| 290 | + |
| 291 | + |
| 292 | +### 目标函数图像 |
0 commit comments