|
| 1 | +import logging |
| 2 | +import tensorflow as tf |
| 3 | +from sklearn.model_selection import train_test_split |
| 4 | +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
1 | 5 |
|
| 6 | +class AITraining: |
| 7 | + def __init__(self, model, data, labels): |
| 8 | + self.model = model |
| 9 | + self.data = data |
| 10 | + self.labels = labels |
| 11 | + self.logger = logging.getLogger(__name__) |
| 12 | + |
| 13 | + def train_model(self, epochs=10, batch_size=32): |
| 14 | + self.logger.info("Starting AI model training") |
| 15 | + X_train, X_val, y_train, y_val = train_test_split(self.data, self.labels, test_size=0.2, random_state=42) |
| 16 | + self.model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val)) |
| 17 | + self.logger.info("AI model training completed") |
| 18 | + |
| 19 | + def evaluate_model(self): |
| 20 | + self.logger.info("Evaluating AI model performance") |
| 21 | + X_train, X_val, y_train, y_val = train_test_split(self.data, self.labels, test_size=0.2, random_state=42) |
| 22 | + y_pred = self.model.predict(X_val) |
| 23 | + y_pred = (y_pred > 0.5).astype(int) |
| 24 | + accuracy = accuracy_score(y_val, y_pred) |
| 25 | + precision = precision_score(y_val, y_pred, average='weighted', zero_division=0) |
| 26 | + recall = recall_score(y_val, y_pred, average='weighted', zero_division=0) |
| 27 | + f1 = f1_score(y_val, y_pred, average='weighted', zero_division=0) |
| 28 | + self.logger.info(f"Model Evaluation: Accuracy={accuracy:.4f}, Precision={precision:.4f}, Recall={recall:.4f}, F1-Score={f1:.4f}") |
| 29 | + return accuracy, precision, recall, f1 |
| 30 | + |
| 31 | + def integrate_vLLM_models(self, vllm_model_paths): |
| 32 | + self.logger.info("Integrating vLLM models") |
| 33 | + self.vllm_models = [] |
| 34 | + for model_path in vllm_model_paths: |
| 35 | + try: |
| 36 | + vllm_model = tf.keras.models.load_model(model_path) |
| 37 | + self.vllm_models.append(vllm_model) |
| 38 | + self.logger.info(f"vLLM model loaded from {model_path}") |
| 39 | + except Exception as e: |
| 40 | + self.logger.error(f"Error loading vLLM model from {model_path}: {e}") |
| 41 | + |
| 42 | + def build_custom_dashboard(self): |
| 43 | + self.logger.info("Building custom dashboard for monitoring and training vLLM models") |
| 44 | + # Placeholder for custom dashboard implementation |
| 45 | + dashboard = { |
| 46 | + "vLLM_models": [model.summary() for model in self.vllm_models], |
| 47 | + "training_data": self.data, |
| 48 | + "labels": self.labels |
| 49 | + } |
| 50 | + self.logger.info("Custom dashboard built successfully") |
| 51 | + return dashboard |
| 52 | + |
| 53 | + def monitor_vLLM_models(self): |
| 54 | + self.logger.info("Monitoring vLLM models") |
| 55 | + # Placeholder for monitoring implementation |
| 56 | + monitoring_data = { |
| 57 | + "vLLM_models": [model.evaluate(self.data, self.labels) for model in self.vllm_models] |
| 58 | + } |
| 59 | + self.logger.info("vLLM models monitoring data collected successfully") |
| 60 | + return monitoring_data |
| 61 | + |
| 62 | + def manually_train_vLLM_models(self, additional_data, additional_labels): |
| 63 | + self.logger.info("Manually training vLLM models") |
| 64 | + for model in self.vllm_models: |
| 65 | + model.fit(additional_data, additional_labels, epochs=10, batch_size=32) |
| 66 | + self.logger.info("Manual training of vLLM models completed") |
0 commit comments