Skip to content

Commit 1ab8658

Browse files
Update ai_training.py
1 parent 2d178f9 commit 1ab8658

File tree

1 file changed

+65
-0
lines changed

1 file changed

+65
-0
lines changed

src/ai/ai_training/ai_training.py

Lines changed: 65 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1 +1,66 @@
1+
import logging
2+
import tensorflow as tf
3+
from sklearn.model_selection import train_test_split
4+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
15

6+
class AITraining:
7+
def __init__(self, model, data, labels):
8+
self.model = model
9+
self.data = data
10+
self.labels = labels
11+
self.logger = logging.getLogger(__name__)
12+
13+
def train_model(self, epochs=10, batch_size=32):
14+
self.logger.info("Starting AI model training")
15+
X_train, X_val, y_train, y_val = train_test_split(self.data, self.labels, test_size=0.2, random_state=42)
16+
self.model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val))
17+
self.logger.info("AI model training completed")
18+
19+
def evaluate_model(self):
20+
self.logger.info("Evaluating AI model performance")
21+
X_train, X_val, y_train, y_val = train_test_split(self.data, self.labels, test_size=0.2, random_state=42)
22+
y_pred = self.model.predict(X_val)
23+
y_pred = (y_pred > 0.5).astype(int)
24+
accuracy = accuracy_score(y_val, y_pred)
25+
precision = precision_score(y_val, y_pred, average='weighted', zero_division=0)
26+
recall = recall_score(y_val, y_pred, average='weighted', zero_division=0)
27+
f1 = f1_score(y_val, y_pred, average='weighted', zero_division=0)
28+
self.logger.info(f"Model Evaluation: Accuracy={accuracy:.4f}, Precision={precision:.4f}, Recall={recall:.4f}, F1-Score={f1:.4f}")
29+
return accuracy, precision, recall, f1
30+
31+
def integrate_vLLM_models(self, vllm_model_paths):
32+
self.logger.info("Integrating vLLM models")
33+
self.vllm_models = []
34+
for model_path in vllm_model_paths:
35+
try:
36+
vllm_model = tf.keras.models.load_model(model_path)
37+
self.vllm_models.append(vllm_model)
38+
self.logger.info(f"vLLM model loaded from {model_path}")
39+
except Exception as e:
40+
self.logger.error(f"Error loading vLLM model from {model_path}: {e}")
41+
42+
def build_custom_dashboard(self):
43+
self.logger.info("Building custom dashboard for monitoring and training vLLM models")
44+
# Placeholder for custom dashboard implementation
45+
dashboard = {
46+
"vLLM_models": [model.summary() for model in self.vllm_models],
47+
"training_data": self.data,
48+
"labels": self.labels
49+
}
50+
self.logger.info("Custom dashboard built successfully")
51+
return dashboard
52+
53+
def monitor_vLLM_models(self):
54+
self.logger.info("Monitoring vLLM models")
55+
# Placeholder for monitoring implementation
56+
monitoring_data = {
57+
"vLLM_models": [model.evaluate(self.data, self.labels) for model in self.vllm_models]
58+
}
59+
self.logger.info("vLLM models monitoring data collected successfully")
60+
return monitoring_data
61+
62+
def manually_train_vLLM_models(self, additional_data, additional_labels):
63+
self.logger.info("Manually training vLLM models")
64+
for model in self.vllm_models:
65+
model.fit(additional_data, additional_labels, epochs=10, batch_size=32)
66+
self.logger.info("Manual training of vLLM models completed")

0 commit comments

Comments
 (0)