Skip to content

Commit 6471c89

Browse files
committed
fix modular doctests
1 parent b79bbb6 commit 6471c89

File tree

5 files changed

+17
-17
lines changed

5 files changed

+17
-17
lines changed

src/torchmetrics/classification/hamming.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -238,7 +238,7 @@ class MulticlassHammingDistance(MulticlassStatScores):
238238
... [0.05, 0.82, 0.13]])
239239
>>> metric = MulticlassHammingDistance(num_classes=3)
240240
>>> metric(preds, target)
241-
tensor(0.1667)
241+
tensor(0.2500)
242242
>>> mchd = MulticlassHammingDistance(num_classes=3, average=None)
243243
>>> mchd(preds, target)
244244
tensor([0.5000, 0.0000, 0.0000])
@@ -249,7 +249,7 @@ class MulticlassHammingDistance(MulticlassStatScores):
249249
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
250250
>>> metric = MulticlassHammingDistance(num_classes=3, multidim_average='samplewise')
251251
>>> metric(preds, target)
252-
tensor([0.5000, 0.7222])
252+
tensor([0.5000, 0.6667])
253253
>>> mchd = MulticlassHammingDistance(num_classes=3, multidim_average='samplewise', average=None)
254254
>>> mchd(preds, target)
255255
tensor([[0.0000, 1.0000, 0.5000],

src/torchmetrics/classification/negative_predictive_value.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -234,7 +234,7 @@ class MulticlassNegativePredictiveValue(MulticlassStatScores):
234234
... [0.05, 0.82, 0.13]])
235235
>>> metric = MulticlassNegativePredictiveValue(num_classes=3)
236236
>>> metric(preds, target)
237-
tensor(0.8889)
237+
tensor(0.8750)
238238
>>> metric = MulticlassNegativePredictiveValue(num_classes=3, average=None)
239239
>>> metric(preds, target)
240240
tensor([0.6667, 1.0000, 1.0000])
@@ -245,7 +245,7 @@ class MulticlassNegativePredictiveValue(MulticlassStatScores):
245245
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
246246
>>> metric = MulticlassNegativePredictiveValue(num_classes=3, multidim_average='samplewise')
247247
>>> metric(preds, target)
248-
tensor([0.7833, 0.6556])
248+
tensor([0.7500, 0.6667])
249249
>>> metric = MulticlassNegativePredictiveValue(num_classes=3, multidim_average='samplewise', average=None)
250250
>>> metric(preds, target)
251251
tensor([[1.0000, 0.6000, 0.7500],
@@ -382,7 +382,7 @@ class MultilabelNegativePredictiveValue(MultilabelStatScores):
382382
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
383383
>>> metric = MultilabelNegativePredictiveValue(num_labels=3)
384384
>>> metric(preds, target)
385-
tensor(0.5000)
385+
tensor(0.6667)
386386
>>> mls = MultilabelNegativePredictiveValue(num_labels=3, average=None)
387387
>>> mls(preds, target)
388388
tensor([1.0000, 0.5000, 0.0000])
@@ -394,7 +394,7 @@ class MultilabelNegativePredictiveValue(MultilabelStatScores):
394394
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
395395
>>> metric = MultilabelNegativePredictiveValue(num_labels=3, multidim_average='samplewise')
396396
>>> metric(preds, target)
397-
tensor([0.0000, 0.1667])
397+
tensor([0.0000, 0.2500])
398398
>>> mls = MultilabelNegativePredictiveValue(num_labels=3, multidim_average='samplewise', average=None)
399399
>>> mls(preds, target)
400400
tensor([[0.0000, 0.0000, 0.0000],

src/torchmetrics/classification/precision_recall.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -251,7 +251,7 @@ class MulticlassPrecision(MulticlassStatScores):
251251
... [0.05, 0.82, 0.13]])
252252
>>> metric = MulticlassPrecision(num_classes=3)
253253
>>> metric(preds, target)
254-
tensor(0.8333)
254+
tensor(0.7500)
255255
>>> mcp = MulticlassPrecision(num_classes=3, average=None)
256256
>>> mcp(preds, target)
257257
tensor([1.0000, 0.5000, 1.0000])
@@ -262,7 +262,7 @@ class MulticlassPrecision(MulticlassStatScores):
262262
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
263263
>>> metric = MulticlassPrecision(num_classes=3, multidim_average='samplewise')
264264
>>> metric(preds, target)
265-
tensor([0.3889, 0.2778])
265+
tensor([0.5000, 0.3333])
266266
>>> mcp = MulticlassPrecision(num_classes=3, multidim_average='samplewise', average=None)
267267
>>> mcp(preds, target)
268268
tensor([[0.6667, 0.0000, 0.5000],
@@ -413,7 +413,7 @@ class MultilabelPrecision(MultilabelStatScores):
413413
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
414414
>>> metric = MultilabelPrecision(num_labels=3)
415415
>>> metric(preds, target)
416-
tensor(0.5000)
416+
tensor(0.6667)
417417
>>> mlp = MultilabelPrecision(num_labels=3, average=None)
418418
>>> mlp(preds, target)
419419
tensor([1.0000, 0.0000, 0.5000])
@@ -425,7 +425,7 @@ class MultilabelPrecision(MultilabelStatScores):
425425
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
426426
>>> metric = MultilabelPrecision(num_labels=3, multidim_average='samplewise')
427427
>>> metric(preds, target)
428-
tensor([0.3333, 0.0000])
428+
tensor([0.4000, 0.0000])
429429
>>> mlp = MultilabelPrecision(num_labels=3, multidim_average='samplewise', average=None)
430430
>>> mlp(preds, target)
431431
tensor([[0.5000, 0.5000, 0.0000],
@@ -710,7 +710,7 @@ class MulticlassRecall(MulticlassStatScores):
710710
... [0.05, 0.82, 0.13]])
711711
>>> metric = MulticlassRecall(num_classes=3)
712712
>>> metric(preds, target)
713-
tensor(0.8333)
713+
tensor(0.7500)
714714
>>> mcr = MulticlassRecall(num_classes=3, average=None)
715715
>>> mcr(preds, target)
716716
tensor([0.5000, 1.0000, 1.0000])
@@ -721,7 +721,7 @@ class MulticlassRecall(MulticlassStatScores):
721721
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
722722
>>> metric = MulticlassRecall(num_classes=3, multidim_average='samplewise')
723723
>>> metric(preds, target)
724-
tensor([0.5000, 0.2778])
724+
tensor([0.5000, 0.3333])
725725
>>> mcr = MulticlassRecall(num_classes=3, multidim_average='samplewise', average=None)
726726
>>> mcr(preds, target)
727727
tensor([[1.0000, 0.0000, 0.5000],

src/torchmetrics/classification/specificity.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -228,7 +228,7 @@ class MulticlassSpecificity(MulticlassStatScores):
228228
... [0.05, 0.82, 0.13]])
229229
>>> metric = MulticlassSpecificity(num_classes=3)
230230
>>> metric(preds, target)
231-
tensor(0.8889)
231+
tensor(0.8750)
232232
>>> mcs = MulticlassSpecificity(num_classes=3, average=None)
233233
>>> mcs(preds, target)
234234
tensor([1.0000, 0.6667, 1.0000])
@@ -239,7 +239,7 @@ class MulticlassSpecificity(MulticlassStatScores):
239239
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
240240
>>> metric = MulticlassSpecificity(num_classes=3, multidim_average='samplewise')
241241
>>> metric(preds, target)
242-
tensor([0.7500, 0.6556])
242+
tensor([0.7500, 0.6667])
243243
>>> mcs = MulticlassSpecificity(num_classes=3, multidim_average='samplewise', average=None)
244244
>>> mcs(preds, target)
245245
tensor([[0.7500, 0.7500, 0.7500],

src/torchmetrics/functional/classification/accuracy.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -234,7 +234,7 @@ def multiclass_accuracy(
234234
>>> target = tensor([2, 1, 0, 0])
235235
>>> preds = tensor([2, 1, 0, 1])
236236
>>> multiclass_accuracy(preds, target, num_classes=3)
237-
tensor(0.8333)
237+
tensor(0.7500)
238238
>>> multiclass_accuracy(preds, target, num_classes=3, average=None)
239239
tensor([0.5000, 1.0000, 1.0000])
240240
@@ -246,7 +246,7 @@ def multiclass_accuracy(
246246
... [0.71, 0.09, 0.20],
247247
... [0.05, 0.82, 0.13]])
248248
>>> multiclass_accuracy(preds, target, num_classes=3)
249-
tensor(0.8333)
249+
tensor(0.7500)
250250
>>> multiclass_accuracy(preds, target, num_classes=3, average=None)
251251
tensor([0.5000, 1.0000, 1.0000])
252252
@@ -255,7 +255,7 @@ def multiclass_accuracy(
255255
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
256256
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
257257
>>> multiclass_accuracy(preds, target, num_classes=3, multidim_average='samplewise')
258-
tensor([0.5000, 0.2778])
258+
tensor([0.5000, 0.3333])
259259
>>> multiclass_accuracy(preds, target, num_classes=3, multidim_average='samplewise', average=None)
260260
tensor([[1.0000, 0.0000, 0.5000],
261261
[0.0000, 0.3333, 0.5000]])

0 commit comments

Comments
 (0)