|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import cv2 |
| 5 | +import tensorflow as tf |
| 6 | +from PIL import Image |
| 7 | +import os |
| 8 | +from sklearn.model_selection import train_test_split |
| 9 | +from keras.utils import to_categorical |
| 10 | +from keras.models import Sequential, load_model |
| 11 | +from keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Dropout |
| 12 | + |
| 13 | +data = [] |
| 14 | +labels = [] |
| 15 | +classes = 43 |
| 16 | +cur_path = os.getcwd() |
| 17 | + |
| 18 | +#Retrieving the images and their labels |
| 19 | +for i in range(classes): |
| 20 | + path = os.path.join(cur_path,'train',str(i)) |
| 21 | + images = os.listdir(path) |
| 22 | + |
| 23 | + for a in images: |
| 24 | + try: |
| 25 | + image = Image.open(path + '\\'+ a) |
| 26 | + image = image.resize((30,30)) |
| 27 | + image = np.array(image) |
| 28 | + #sim = Image.fromarray(image) |
| 29 | + data.append(image) |
| 30 | + labels.append(i) |
| 31 | + except: |
| 32 | + print("Error loading image") |
| 33 | + |
| 34 | +#Converting lists into numpy arrays |
| 35 | +data = np.array(data) |
| 36 | +labels = np.array(labels) |
| 37 | + |
| 38 | +print(data.shape, labels.shape) |
| 39 | +#Splitting training and testing dataset |
| 40 | +X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42) |
| 41 | + |
| 42 | +print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) |
| 43 | + |
| 44 | +#Converting the labels into one hot encoding |
| 45 | +y_train = to_categorical(y_train, 43) |
| 46 | +y_test = to_categorical(y_test, 43) |
| 47 | + |
| 48 | +#Building the model |
| 49 | +model = Sequential() |
| 50 | +model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu', input_shape=X_train.shape[1:])) |
| 51 | +model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu')) |
| 52 | +model.add(MaxPool2D(pool_size=(2, 2))) |
| 53 | +model.add(Dropout(rate=0.25)) |
| 54 | +model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) |
| 55 | +model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) |
| 56 | +model.add(MaxPool2D(pool_size=(2, 2))) |
| 57 | +model.add(Dropout(rate=0.25)) |
| 58 | +model.add(Flatten()) |
| 59 | +model.add(Dense(256, activation='relu')) |
| 60 | +model.add(Dropout(rate=0.5)) |
| 61 | +model.add(Dense(43, activation='softmax')) |
| 62 | + |
| 63 | +#Compilation of the model |
| 64 | +model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) |
| 65 | + |
| 66 | +epochs = 15 |
| 67 | +history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_test, y_test)) |
| 68 | +model.save("my_model.h5") |
| 69 | + |
| 70 | +#plotting graphs for accuracy |
| 71 | +plt.figure(0) |
| 72 | +plt.plot(history.history['accuracy'], label='training accuracy') |
| 73 | +plt.plot(history.history['val_accuracy'], label='val accuracy') |
| 74 | +plt.title('Accuracy') |
| 75 | +plt.xlabel('epochs') |
| 76 | +plt.ylabel('accuracy') |
| 77 | +plt.legend() |
| 78 | +plt.show() |
| 79 | + |
| 80 | +plt.figure(1) |
| 81 | +plt.plot(history.history['loss'], label='training loss') |
| 82 | +plt.plot(history.history['val_loss'], label='val loss') |
| 83 | +plt.title('Loss') |
| 84 | +plt.xlabel('epochs') |
| 85 | +plt.ylabel('loss') |
| 86 | +plt.legend() |
| 87 | +plt.show() |
| 88 | + |
| 89 | +#testing accuracy on test dataset |
| 90 | +from sklearn.metrics import accuracy_score |
| 91 | + |
| 92 | +y_test = pd.read_csv('Test.csv') |
| 93 | + |
| 94 | +labels = y_test["ClassId"].values |
| 95 | +imgs = y_test["Path"].values |
| 96 | + |
| 97 | +data=[] |
| 98 | + |
| 99 | +for img in imgs: |
| 100 | + image = Image.open(img) |
| 101 | + image = image.resize((30,30)) |
| 102 | + data.append(np.array(image)) |
| 103 | + |
| 104 | +X_test=np.array(data) |
| 105 | + |
| 106 | +pred = model.predict_classes(X_test) |
| 107 | + |
| 108 | +#Accuracy with the test data |
| 109 | +from sklearn.metrics import accuracy_score |
| 110 | +print(accuracy_score(labels, pred)) |
0 commit comments