Skip to content

Commit 3fa6789

Browse files
committed
Fix headers
1 parent fa80fe7 commit 3fa6789

File tree

6 files changed

+11
-11
lines changed

6 files changed

+11
-11
lines changed

deep_learning/README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
### Semantic Segmentation
44

55
| Paper | Notes | Author | Summary |
6-
|-:-:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-:-:----------------------------------------------|-:-:-------------------------------------|-:-:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
6+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------:|:---------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
77
| [Semi-Supervised Semantic Segmentation with Cross-Consistency Training](https://openaccess.thecvf.com/content_CVPR_2020/papers/Ouali_Semi-Supervised_Semantic_Segmentation_With_Cross-Consistency_Training_CVPR_2020_paper.pdf) (CVPR '20) | [HackMD](https://hackmd.io/@akshayk07/B1uYpeMNw) | [Akshay](https://akshayk07.weebly.com/) | This paper proposes cross-consistency training, where an invariance of the predictions is enforced over different perturbations applied to the outputs of the encoder (in a shared encoder and multiple decoder architecture). |
88
| [Gated-SCNN: Gated Shape CNNs for Semantic Segmentation](http://openaccess.thecvf.com/content_ICCV_2019/html/Takikawa_Gated-SCNN_Gated_Shape_CNNs_for_Semantic_Segmentation_ICCV_2019_paper.html) (ICCV '19) | [HackMD](https://hackmd.io/@akshayk07/ryhzTGJor) | [Akshay](https://akshayk07.weebly.com/) | This paper presents a 2-stream CNN i.e. one stream is normal CNN (classical stream) while the other is a shape stream, which explicitly processes shape information in a separate stream. |
99
| [ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation](https://arxiv.org/abs/1606.02147) | [HackMD](https://hackmd.io/@akshayk07/rJ4NL3sTB) | [Akshay](https://akshayk07.weebly.com/) | This paper presents a network architecture which is faster and more compact, for low real-time inference times. |
@@ -14,7 +14,7 @@
1414
### Domain Adaptation
1515

1616
| Paper | Notes | Author | Summary |
17-
|-:-:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-:-:------------------------------------------------|-:-:-------------------------------------|-:-:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
17+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------:|:---------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
1818
| [Domain Adaptive Semantic Segmentation Using Weak Labels](https://arxiv.org/abs/2007.15176) (ECCV '20) | [HackMD](https://hackmd.io/@akshayk07/rydQyAVHv) | [Akshay](https://akshayk07.weebly.com/) | This paper proposes a framework for Domain Adaptation (DA) in semantic segmentation with image-level weak labels in the target domain. They use weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in DA. |
1919
| [DACS: Domain Adaptation via Cross-domain Mixed Sampling](https://arxiv.org/abs/2007.08702) | [HackMD](https://hackmd.io/@akshayk07/ByhfvJ7XP) | [Akshay](https://akshayk07.weebly.com/) | This paper proposes Domain Adaptation via Cross-domain Mixed Sampling which mixes images from two domains along with their corresponding labels. These mixed samples are trained on, along with the labelled data itself. |
2020
| [Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation](https://openaccess.thecvf.com/content_CVPR_2020/html/Kim_Learning_Texture_Invariant_Representation_for_Domain_Adaptation_of_Semantic_Segmentation_CVPR_2020_paper.html) (CVPR '20) | [HackMD](https://hackmd.io/@akshayk07/B167fmyGD) | [Akshay](https://akshayk07.weebly.com/) | This paper uses style transfer to enforce texture invariance in the model, followed by self training to adapt to the target domain texture for the semantic segmentation task. |
@@ -27,7 +27,7 @@
2727
### Knowledge Distillation
2828

2929
| Paper | Notes | Author | Summary |
30-
|-:-:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-:-:------------------------------------------------|-:-:-------------------------------------|-:-:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
30+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------:|:---------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
3131
| [Distilling the Knowledge in a Neural Network](https://arxiv.org/pdf/1503.02531.pdf) (NIPS '14W) | [HackMD](https://hackmd.io/AntG2tWLQw-dflF5Y1fXig) | [Raj](https://github.com/RajGhugare19) | This paper is the first DL approach to transfer knowledge from a teacher network to a student network, and uses softened outputs of the teacher network for training the student network. |
3232
| [A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning](http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf) (CVPR '17) | [HackMD](https://hackmd.io/@akshayk07/rkj6RFc28) | [Akshay](https://akshayk07.weebly.com/) | This paper formulates the knowledge to be transferred in terms of flow between layers, calculates it as the inner product between feature maps from 2 layers, and uses this for Knowledge Distillation. |
3333
| [Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer](https://arxiv.org/abs/1612.03928) (ICLR '17) | [HackMD](https://hackmd.io/@akshayk07/BkzGciz38) | [Akshay](https://akshayk07.weebly.com/) | This paper defines attention for CNNs, and uses it to improve the performance of a student CNN network by forcing it to mimic the attention maps of a powerful teacher network. |
@@ -37,17 +37,17 @@
3737
### Active Learning
3838

3939
| Paper | Notes | Author | Summary |
40-
|-:-:------------------------------------------------------------------------------------|-:-:------------------------------------------------|-:-:-------------------------------------|-:-:--------------------------------------------------------------------------------------------------------------------------------------------------|
40+
|:--------------------------------------------------------------------------------------:|:--------------------------------------------------:|:---------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------:|
4141
| [Variational Adversarial Active Learning](https://arxiv.org/abs/1904.00370) (ICCV '19) | [HackMD](https://hackmd.io/CxZNGh6dS3m2axmP50iN8g) | [Akshay](https://akshayk07.weebly.com/) | This paper introduces a pool-based active learning strategy which learns a low dimensional latent space from labeled and unlabeled data using a VAE. |
4242

4343
### Feature Detection and Description
4444

4545
| Paper | Notes | Author | Summary |
46-
|-:-:---------------------------------------------------------------------------------------------------------------------------|-:-:----------------------------------------------------|-:-:------------------------------------------------------------------------------------|-:-:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
46+
|:-----------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------:|:--------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
4747
| [D2 Net - A Trainable CNN for Joint Description and Detection of Local Features](https://arxiv.org/abs/1905.03561) (CVPR '19) | [HackMD](https://hackmd.io/@AniketGujarathi/SywvV8iQD) | [Aniket Gujarathi](https://www.linkedin.com/in/aniket-gujarathi/?originalSubdomain=in) | This paper introduces a Deep Learning based approach to solve the problem of local features detection and description using the detect-and-describe approach instead of the traditionally used detect-then-describe approach. |
4848

4949
### Self Supervised Learning
5050

5151
| Paper | Notes | Author | Summary |
52-
|-:-:---------------------------------------------------------------------------------------------------------------------------------|-:-:-----------------------------------------------------------|-:-:------------------------------------------------------------------------------------------------------------------------|-:-:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
52+
|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
5353
| [Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection](https://arxiv.org/pdf/1902.01275.pdf) (ECCV '18) | [HackMD](https://hackmd.io/@6GX-kbOaSt6hNkpWQyj20A/r1tnl1gQD) | [Aayush](https://github.com/aayush-fadia), [Jayesh](https://github.com/jayeshk7), [Saketh](https://github.com/sakethbachu) | This paper presents a real-time RGB-based pipeline for object detection and 6D pose estimation, based on a variant of denoising autoencoder, which is an augmented encoder trained on views of a 3D model using domain randomization. |

dynamics_controls/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Dynamics and Controls
22

33
| Papers | Notes | Author | Summary |
4-
|-:-:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-:-:-----------------------------------------------------------|-:-:--------------------------------------|-:-:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
4+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------:|:----------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
55
| [Integral Sliding Mode Based Switched Structure Control Scheme for Robot Manipulators](https://www.researchgate.net/publication/327807849_Integral_Sliding_Mode_Based_Switched_Structure_Control_Scheme_for_Robot_Manipulators) | [HackMD](https://hackmd.io/INtsyouET5Sxv6K6pIUcoQ?view) | [Saad](https://github.com/saad2121) | This paper proposes the switching scheme between the inverse dynamics based centralized controller and a set of decentralized controllers. ISM is used as perturbation estimator and to provide robustness in front of a wide class of uncertainties. |
66
| [Real-Time Obstacle Avoidance for Manipulators and Mobile Robots](https://link.springer.com/chapter/10.1007/978-1-4613-8997-2_29) | [HackMD](https://hackmd.io/m_dwVyo9TnKIZQa5V7QGRQ?view) | [Saad](https://github.com/saad2121) | This paper proposes the unique real-time obstacle avoidance approach for manipulators and mobile robots using Artifical Potential Field approach. |
77
| [Customizable Three-Dimensional Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions](https://ieeexplore.ieee.org/abstract/document/8481372/keywords#keywords) | [HackMD](https://hackmd.io/@kZ5m8OgNSouLVUfdO4Vu3w/SJtDCMGtU) | [Uddesh](https://github.com/uddeshtople) | A combination of passive stiffness presetting and active PID cascade control was implemented for a pneumatic soft origami rotary actuators (SoRAs). |

0 commit comments

Comments
 (0)