Skip to content

Commit 26d5cd1

Browse files
committed
fix deps in Project.toml
Signed-off-by: Paulito Palmes, PhD <ppalmes@gmail.com>
2 parents 8229595 + fe0206a commit 26d5cd1

File tree

12 files changed

+589
-590
lines changed

12 files changed

+589
-590
lines changed

Project.toml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,21 @@
11
name = "TSML"
22
uuid = "198dc43e-9e51-5cd7-9d40-d9794d335912"
33
authors = ["Paulito Palmes <ppalmes@gmail.com>"]
4-
version = "2.7.4"
4+
version = "2.7.5"
55

66
[deps]
77
AMLPipelineBase = "e3c3008a-8869-4d53-9f34-c96f99c8a2b6"
88
ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63"
99
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
1010
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
1111
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
12+
GR = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
1213
Impute = "f7bf1975-0170-51b9-8c5f-a992d46b9575"
1314
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
1415
MLDataUtils = "cc2ba9b6-d476-5e6d-8eaf-a92d5412d41d"
1516
MultivariateStats = "6f286f6a-111f-5878-ab1e-185364afe411"
17+
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
1618
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
17-
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
1819
Serialization = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
1920
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
2021
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
@@ -29,7 +30,6 @@ Impute = "0.5, 0.6"
2930
MLDataUtils = "0.2, 0.3, 0.4, 0.5"
3031
MultivariateStats = "0.5, 0.6, 0.7, 0.8, 0.9, 0.10"
3132
Plots = "1.38"
32-
RecipesBase = "1.1"
3333
StatsBase = "0.29, 0.30, 0.31, 0.32, 0.33"
3434
julia = "1"
3535

README.md

Lines changed: 16 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,22 @@
1-
<div align="center"> <img
2-
src="https://ibm.github.io/TSML.jl/tsmllogo/tsmllogo13.png"
3-
alt="TSML Logo" width="250"></img> </div>
1+
<div align="center">
42

5-
![Overall Stats](https://github-readme-stats.vercel.app/api?username=ppalmes&count_private=true&show_icons=true&hide=contribs)
3+
![Visitor](https://visitor-badge.laobi.icu/badge?page_id=ppalmes.TSML.jl)
4+
5+
<img
6+
src="https://ibm.github.io/TSML.jl/tsmllogo/tsmllogo13.png"
7+
alt="TSML Logo" width="250">
8+
</img>
69

710
[![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/7094/badge)](https://bestpractices.coreinfrastructure.org/projects/7094)
811

12+
![Overall Stats](https://github-readme-stats.vercel.app/api?username=ppalmes&count_private=true&show_icons=true&hide=contribs)
13+
914
| **Documentation** | **Build Status** | **Help** |
1015
|:---:|:---:|:---:|
1116
| [![][docs-dev-img]][docs-dev-url] [![][docs-stable-img]][docs-stable-url] | [![][travis-img]][travis-url] | [![][slack-img]][slack-url] [![][gitter-img]][gitter-url] |
1217

18+
</div>
19+
1320
#### Stargazers over time
1421
[![Stargazers over time](https://starchart.cc/IBM/TSML.jl.svg)](https://starchart.cc/IBM/TSML.jl)
1522

@@ -141,7 +148,7 @@ chkoutlier = Outliernicer(Dict(:dateinterval => Dates.Hour(1))) # normalize ou
141148

142149
- ##### Pipeline to load csv data
143150
```julia
144-
pipexpr = @pipeline csvread
151+
pipexpr = csvread
145152
data = fit_transform!(pipexpr)
146153
first(data,5)
147154

@@ -158,7 +165,7 @@ first(data,5)
158165

159166
- ##### Pipeline to aggregate and check statistics
160167
```julia
161-
pipexpr = @pipeline csvread |> aggregate |> chkstats
168+
pipexpr = csvread |> aggregate |> chkstats
162169
stats = fit_transform!(pipexpr)
163170

164171
1×26 DataFrame. Omitted printing of 19 columns
@@ -171,7 +178,7 @@ Note: `fit_transform!` is equivalent to calling in sequence `fit!` and `transfor
171178

172179
- ##### Pipeline to aggregate, impute, and check stats
173180
```julia
174-
pipexpr = @pipeline csvread |> aggregate |> impute |> chkstats
181+
pipexpr = csvread |> aggregate |> impute |> chkstats
175182
stats2 = fit_transform!(pipexpr)
176183

177184
1×26 DataFrame. Omitted printing of 19 columns
@@ -183,7 +190,7 @@ stats2 = fit_transform!(pipexpr)
183190

184191
- ##### Pipeline to aggregate, impute, and normalize monotonic data
185192
```julia
186-
pipexpr = @pipeline csvread |> aggregate |> impute |> normtonic
193+
pipexpr = csvread |> aggregate |> impute |> normtonic
187194
fit_transform!(pipexpr)
188195

189196
8761×2 DataFrame
@@ -224,7 +231,7 @@ ts = DataFrame(Date=datets,Value=valuets)
224231
args = Dict(:ahead => 24,:size => 24,:stride => 5)
225232
datemtr = Dateifier(args)
226233
valuemtr = Matrifier(args)
227-
ppl = @pipeline datemtr + valuemtr
234+
ppl = datemtr + valuemtr
228235
dateval = fit_transform!(ppl,ts)
229236
first(dateval,5)
230237

docs/notebooks/JuliaCon2019.jl.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -304,7 +304,7 @@
304304
}
305305
],
306306
"source": [
307-
"pltr=Plotter(Dict(:interactive => true))\n",
307+
"pltr=Plotter(Dict(:pdfoutput => true))\n",
308308
"\n",
309309
"mypipeline = pltr\n",
310310
"\n",

docs/notebooks/StaticPlotting.jl.ipynb

Lines changed: 464 additions & 500 deletions
Large diffs are not rendered by default.

docs/src/man/dateproc.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ Another way is to use the symbolic pipeline to
7979
describe the transformation and concatenation in
8080
just one line of expression.
8181
```@example dateifier
82-
ppl = @pipeline dtr + mtr
82+
ppl = dtr + mtr
8383
features = fit_transform!(ppl,X)
8484
nothing #hide
8585
```

docs/src/tutorial/monotonic_plotting.md

Lines changed: 32 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,12 @@ We can use the `Plotter` filter to visualize the generated data.
1717
using TSML
1818
1919
Random.seed!(123)
20-
pltr = Plotter(Dict(:interactive => false,:pdfoutput => false))
20+
pltr = Plotter(Dict(:pdfoutput => false))
2121
mdates = DateTime(2017,12,1,1):Dates.Hour(1):DateTime(2017,12,31,10) |> collect
2222
mvals = rand(length(mdates)) |> cumsum
2323
df = DataFrame(Date=mdates ,Value = mvals)
24-
fit_transform!(pltr,df)
24+
fit_transform!(pltr,df);
25+
nothing #hide
2526
```
2627

2728
Now that we have a monotonic data, let's use the `Monotonicer` to normalize and plot the result:
@@ -31,9 +32,10 @@ using TSML
3132
3233
mono = Monotonicer(Dict())
3334
34-
pipeline = @pipeline mono |> pltr
35+
pipeline = mono |> pltr
3536
36-
res=fit_transform!(pipeline,df)
37+
res=fit_transform!(pipeline,df);
38+
nothing #hide
3739
```
3840

3941
## Real Data Example
@@ -61,10 +63,10 @@ monofilecsv = CSVDateValReader(Dict(:filename=>monofile,:dateformat=>"dd/mm/yyyy
6163
dailymonofilecsv = CSVDateValReader(Dict(:filename=>dailymonofile,:dateformat=>"dd/mm/yyyy HH:MM"))
6264
6365
valgator = DateValgator(Dict(:dateinterval=>Dates.Hour(1)))
64-
valnner = DateValNNer(Dict(:dateinterval=>Dates.Hour(1)))
66+
valnner = DateValLinearImputer(Dict(:dateinterval=>Dates.Hour(1)))
6567
stfier = Statifier(Dict(:processmissing=>true))
6668
mono = Monotonicer(Dict())
67-
pltr = Plotter(Dict(:interactive => false))
69+
pltr = Plotter(Dict(:pdfoutput => false))
6870
nothing #hide
6971
```
7072

@@ -75,16 +77,18 @@ Let's test by feeding the regular time series type to the pipeline. We expect th
7577

7678
- Pipeline with `Monotonicer`: regular time series
7779
```@example mono
78-
pipeline = @pipeline regularfilecsv |> valgator |> valnner |> mono |> pltr
80+
pipeline = regularfilecsv |> valgator |> valnner |> mono |> pltr
7981
80-
fit_transform!(pipeline)
82+
fit_transform!(pipeline);
83+
nothing #hide
8184
```
8285

8386
- Pipeline without `Monotonicer`: regular time series
8487
```@example mono
85-
pipeline = @pipeline regularfilecsv |> valgator |> valnner |> pltr
88+
pipeline = regularfilecsv |> valgator |> valnner |> pltr
8689
87-
fit_transform!(pipeline)
90+
fit_transform!(pipeline);
91+
nothing #hide
8892
```
8993

9094
Notice that the plots are the same with or without the `Monotonicer` instance.
@@ -94,16 +98,18 @@ Let's now feed the same pipeline with a monotonic csv data.
9498

9599
- Pipeline without `Monotonicer`: monotonic time series
96100
```@example mono
97-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> pltr
101+
pipeline = monofilecsv |> valgator |> valnner |> pltr
98102
99-
fit_transform!(pipeline)
103+
fit_transform!(pipeline);
104+
nothing #hide
100105
```
101106

102107
- Pipeline with `Monotonicer`: monotonic time series
103108
```@example mono
104-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> mono |> pltr
109+
pipeline = monofilecsv |> valgator |> valnner |> mono |> pltr
105110
106-
fit_transform!(pipeline)
111+
fit_transform!(pipeline);
112+
nothing #hide
107113
```
108114

109115
Notice that without the `Monotonicer` instance, the data is monotonic. Applying
@@ -118,17 +124,19 @@ We can use the `Outliernicer` filter to remove outliers. Let's apply this filter
118124
using TSML: Outliernicer
119125
outliernicer = Outliernicer(Dict(:dateinterval=>Dates.Hour(1)));
120126
121-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
122-
fit_transform!(pipeline)
127+
pipeline = monofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
128+
fit_transform!(pipeline);
129+
nothing #hide
123130
```
124131

125132
## Daily Monotonic TS Processing
126133
Lastly, let's feed the daily monotonic data using similar pipeline and examine its plot.
127134

128135
- Pipeline without `Monotonicer`: daily monotonic time series
129136
```@example mono
130-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> pltr
131-
fit_transform!(pipeline)
137+
pipeline = dailymonofilecsv |> valgator |> valnner |> pltr
138+
fit_transform!(pipeline);
139+
nothing #hide
132140
```
133141

134142
This plot is characterized by monotonically increasing trend but resets to certain baseline value
@@ -138,8 +146,9 @@ the correct normalization.
138146

139147
- Pipeline with `Monotonicer`: daily monotonic time series
140148
```@example mono
141-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> mono |> pltr
142-
fit_transform!(pipeline)
149+
pipeline = dailymonofilecsv |> valgator |> valnner |> mono |> pltr
150+
fit_transform!(pipeline);
151+
nothing #hide
143152
```
144153

145154
While the `Monotonicer` filter is able to transform the data into a regular time series,
@@ -149,8 +158,9 @@ Let's remove the outliers by applying the `Outliernicer` filter and examine the
149158

150159
- Pipeline with `Monotonicer` and `Outliernicer`: daily monotonic time series
151160
```@example mono
152-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
153-
fit_transform!(pipeline)
161+
pipeline = dailymonofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
162+
fit_transform!(pipeline);
163+
nothing #hide
154164
```
155165

156166
The `Outliernicer` filter effectively removed the outliers as shown in the plot.

docs/src/tutorial/monotonic_plotting_pdf.md renamed to docs/src/tutorial/monotonic_plotting_pdf.md1

Lines changed: 31 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,12 @@ We can use the `Plotter` filter to visualize the generated data.
1717
using TSML
1818

1919
Random.seed!(123)
20-
pltr = Plotter(Dict(:interactive => false,:pdfoutput => true))
20+
pltr = Plotter(Dict(:pdfoutput => true))
2121
mdates = DateTime(2017,12,1,1):Dates.Hour(1):DateTime(2017,12,31,10) |> collect
2222
mvals = rand(length(mdates)) |> cumsum
2323
df = DataFrame(Date=mdates ,Value = mvals)
24-
fit_transform!(pltr,df)
24+
fit_transform!(pltr,df);
25+
nothing #hide
2526
```
2627

2728
Now that we have a monotonic data, let's use the `Monotonicer` to normalize and plot the result:
@@ -31,9 +32,10 @@ using TSML
3132

3233
mono = Monotonicer(Dict())
3334

34-
pipeline = @pipeline mono |> pltr
35+
pipeline = mono |> pltr
3536

3637
res=fit_transform!(pipeline,df)
38+
nothing #hide
3739
```
3840

3941
## Real Data Example
@@ -61,10 +63,10 @@ monofilecsv = CSVDateValReader(Dict(:filename=>monofile,:dateformat=>"dd/mm/yyyy
6163
dailymonofilecsv = CSVDateValReader(Dict(:filename=>dailymonofile,:dateformat=>"dd/mm/yyyy HH:MM"))
6264

6365
valgator = DateValgator(Dict(:dateinterval=>Dates.Hour(1)))
64-
valnner = DateValNNer(Dict(:dateinterval=>Dates.Hour(1)))
66+
valnner = DateValLinearImputer(Dict(:dateinterval=>Dates.Hour(1)))
6567
stfier = Statifier(Dict(:processmissing=>true))
6668
mono = Monotonicer(Dict())
67-
pltr = Plotter(Dict(:interactive => false))
69+
pltr = Plotter(Dict(:pdfoutput => true))
6870
nothing #hide
6971
```
7072

@@ -75,16 +77,18 @@ Let's test by feeding the regular time series type to the pipeline. We expect th
7577

7678
- Pipeline with `Monotonicer`: regular time series
7779
```@example mono
78-
pipeline = @pipeline regularfilecsv |> valgator |> valnner |> mono |> pltr
80+
pipeline = regularfilecsv |> valgator |> valnner |> mono |> pltr
7981

80-
fit_transform!(pipeline)
82+
fit_transform!(pipeline);
83+
nothing #hide
8184
```
8285

8386
- Pipeline without `Monotonicer`: regular time series
8487
```@example mono
85-
pipeline = @pipeline regularfilecsv |> valgator |> valnner |> pltr
88+
pipeline = regularfilecsv |> valgator |> valnner |> pltr
8689

87-
fit_transform!(pipeline)
90+
fit_transform!(pipeline);
91+
nothing #hide
8892
```
8993

9094
Notice that the plots are the same with or without the `Monotonicer` instance.
@@ -94,16 +98,18 @@ Let's now feed the same pipeline with a monotonic csv data.
9498

9599
- Pipeline without `Monotonicer`: monotonic time series
96100
```@example mono
97-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> pltr
101+
pipeline = monofilecsv |> valgator |> valnner |> pltr
98102

99-
fit_transform!(pipeline)
103+
fit_transform!(pipeline);
104+
nothing #hide
100105
```
101106

102107
- Pipeline with `Monotonicer`: monotonic time series
103108
```@example mono
104-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> mono |> pltr
109+
pipeline = monofilecsv |> valgator |> valnner |> mono |> pltr
105110

106-
fit_transform!(pipeline)
111+
fit_transform!(pipeline);
112+
nothing #hide
107113
```
108114

109115
Notice that without the `Monotonicer` instance, the data is monotonic. Applying
@@ -118,17 +124,19 @@ We can use the `Outliernicer` filter to remove outliers. Let's apply this filter
118124
using TSML: Outliernicer
119125
outliernicer = Outliernicer(Dict(:dateinterval=>Dates.Hour(1)));
120126

121-
pipeline = @pipeline monofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
122-
fit_transform!(pipeline)
127+
pipeline = monofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
128+
fit_transform!(pipeline);
129+
nothing #hide
123130
```
124131

125132
## Daily Monotonic TS Processing
126133
Lastly, let's feed the daily monotonic data using similar pipeline and examine its plot.
127134

128135
- Pipeline without `Monotonicer`: daily monotonic time series
129136
```@example mono
130-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> pltr
131-
fit_transform!(pipeline)
137+
pipeline = dailymonofilecsv |> valgator |> valnner |> pltr
138+
fit_transform!(pipeline);
139+
nothing #hide
132140
```
133141

134142
This plot is characterized by monotonically increasing trend but resets to certain baseline value
@@ -138,8 +146,9 @@ the correct normalization.
138146

139147
- Pipeline with `Monotonicer`: daily monotonic time series
140148
```@example mono
141-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> mono |> pltr
142-
fit_transform!(pipeline)
149+
pipeline = dailymonofilecsv |> valgator |> valnner |> mono |> pltr
150+
fit_transform!(pipeline);
151+
nothing #hide
143152
```
144153

145154
While the `Monotonicer` filter is able to transform the data into a regular time series,
@@ -149,8 +158,9 @@ Let's remove the outliers by applying the `Outliernicer` filter and examine the
149158

150159
- Pipeline with `Monotonicer` and `Outliernicer`: daily monotonic time series
151160
```@example mono
152-
pipeline = @pipeline dailymonofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
153-
fit_transform!(pipeline)
161+
pipeline = dailymonofilecsv |> valgator |> valnner |> mono |> outliernicer |> pltr
162+
fit_transform!(pipeline);
163+
nothing #hide
154164
```
155165

156166
The `Outliernicer` filter effectively removed the outliers as shown in the plot.

0 commit comments

Comments
 (0)