Skip to content

getting the number of Koren's SVD++  #38

@Kublai-Jing

Description

@Kublai-Jing

solved.... my data has some issue


Hi,

I am trying to replicate the result on Netflix probe set in Koren's 2008 KDD paper using graphchi implementation of SVD++ so I set up the following parameters in
graphchi-cpp/toolkits/collaborative_filtering/svdpp.cpp

%%%%
svdpp.step_dec = get_option_float("svdpp_step_dec", 0.9);
svdpp.itmBiasStep = get_option_float("svdpp_item_bias_step", 0.007);
svdpp.itmBiasReg = get_option_float("svdpp_item_bias_reg", 0.005);
svdpp.usrBiasStep = get_option_float("svdpp_user_bias_step", 0.007);
svdpp.usrBiasReg = get_option_float("svdpp_user_bias_reg", 0.005);
svdpp.usrFctrStep = get_option_float("svdpp_user_factor_step", 0.007);
svdpp.usrFctrReg = get_option_float("svdpp_user_factor_reg", 0.015);
svdpp.itmFctrReg = get_option_float("svdpp_item_factor_reg", 0.015);
svdpp.itmFctrStep = get_option_float("svdpp_item_factor_step", 0.007);
svdpp.itmFctr2Reg = get_option_float("svdpp_item_factor2_reg", 0.015);
svdpp.itmFctr2Step = get_option_float("svdpp_item_factor2_step", 0.001);

%%%%

However I am getting something like this:

[minval] => [1]
[maxval] => [5]
[max_iter] => [40]
[quiet] => [1]
[D] => [50]
28.9275) Iteration: 0 Training RMSE: 0.991109 Validation RMSE: 1.05016 ratings_per_sec: 0
56.988) Iteration: 1 Training RMSE: 1.13069 Validation RMSE: 1.13803 ratings_per_sec: 1.702e+06
84.9509) Iteration: 2 Training RMSE: 1.37655 Validation RMSE: 1.43292 ratings_per_sec: 2.29897e+06
113.139) Iteration: 3 Training RMSE: 1.68918 Validation RMSE: 1.87668 ratings_per_sec: 2.59855e+06
140.337) Iteration: 4 Training RMSE: 1.88749 Validation RMSE: 2.08639 ratings_per_sec: 2.79937e+06
169.082) Iteration: 5 Training RMSE: 1.98145 Validation RMSE: 2.06916 ratings_per_sec: 2.90865e+06
197.412) Iteration: 6 Training RMSE: 1.98927 Validation RMSE: 2.12117 ratings_per_sec: 2.99253e+06
225.531) Iteration: 7 Training RMSE: 1.98473 Validation RMSE: 2.11817 ratings_per_sec: 3.05846e+06
254.665) Iteration: 8 Training RMSE: 1.97704 Validation RMSE: 2.14269 ratings_per_sec: 3.09737e+06
283.274) Iteration: 9 Training RMSE: 1.97679 Validation RMSE: 2.14098 ratings_per_sec: 3.13412e+06
310.496) Iteration: 10 Training RMSE: 1.97564 Validation RMSE: 2.1162 ratings_per_sec: 3.17823e+06
338.768) Iteration: 11 Training RMSE: 1.97641 Validation RMSE: 2.11651 ratings_per_sec: 3.20535e+06
366.073) Iteration: 12 Training RMSE: 1.97204 Validation RMSE: 2.06543 ratings_per_sec: 3.23678e+06
394.577) Iteration: 13 Training RMSE: 1.97018 Validation RMSE: 2.0808 ratings_per_sec: 3.25387e+06
423.161) Iteration: 14 Training RMSE: 1.9682 Validation RMSE: 2.08301 ratings_per_sec: 3.26834e+06
452.649) Iteration: 15 Training RMSE: 1.9673 Validation RMSE: 2.05791 ratings_per_sec: 3.27412e+06
481.934) Iteration: 16 Training RMSE: 1.96858 Validation RMSE: 2.05757 ratings_per_sec: 3.28081e+06
511.155) Iteration: 17 Training RMSE: 1.96518 Validation RMSE: 2.06031 ratings_per_sec: 3.28712e+06
539.405) Iteration: 18 Training RMSE: 1.96373 Validation RMSE: 2.08988 ratings_per_sec: 3.29856e+06
569.019) Iteration: 19 Training RMSE: 1.96371 Validation RMSE: 2.05959 ratings_per_sec: 3.30103e+06


Any idea what happened ??

Thanks !

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions