|
| 1 | +#include<iostream> |
| 2 | +#include<stdlib.h> |
| 3 | +using namespace std; |
| 4 | + |
| 5 | +int AB[50]; |
| 6 | + |
| 7 | +void input(int a) |
| 8 | +{ |
| 9 | + for(int i=0;i<a;i++) |
| 10 | + cin>>AB[i]; |
| 11 | + cout<<"entered elements are ::"; |
| 12 | + for(int i=0;i<a;i++) |
| 13 | + cout<<AB[i]<<"\t"; |
| 14 | + cout<<"\n"; |
| 15 | +} |
| 16 | +void printArray( int s) |
| 17 | +{ |
| 18 | + int i; |
| 19 | + for (i = 0; i < s; i++) |
| 20 | + cout << AB[i] << " "; |
| 21 | + cout << endl; |
| 22 | +} |
| 23 | +void linearSearch(int a) |
| 24 | +{ |
| 25 | + int i; |
| 26 | + int x; |
| 27 | + cout<<"enter the element to be searched "; |
| 28 | + cin>>x; |
| 29 | + cout<<endl; |
| 30 | + int found=0; |
| 31 | + for (i = 0; i < a; i++) |
| 32 | + { |
| 33 | + if (AB[i] == x) |
| 34 | + { |
| 35 | + found=1; |
| 36 | + break; |
| 37 | + } |
| 38 | + } |
| 39 | + if(found==1) |
| 40 | + cout<<"Elemnet found at "<<i+1<<" position"<<endl; |
| 41 | + else |
| 42 | + cout<<"Not found" ; |
| 43 | +} |
| 44 | +int binarySearch( int l, int r,int y) // only position of 1st and last element is passed as argument as the array is global |
| 45 | +{ |
| 46 | + |
| 47 | + if (r >= l) { |
| 48 | + int mid = (l + r )/ 2; |
| 49 | + |
| 50 | + // If the element is present at the middle |
| 51 | + if (AB[mid] ==y) |
| 52 | + return mid; |
| 53 | + |
| 54 | + // If element is smaller than mid, then it can only be present in left |
| 55 | + if (AB[mid] > y) |
| 56 | + return binarySearch( l, mid - 1,y); |
| 57 | + |
| 58 | + // Else the element can only be present in right s |
| 59 | + return binarySearch( mid + 1, r,y); |
| 60 | + |
| 61 | + } |
| 62 | + else |
| 63 | + return -1; |
| 64 | + // We reach here when element is not |
| 65 | + // present in array |
| 66 | + return -1; |
| 67 | +} |
| 68 | +void swapped(int *xp, int *yp) |
| 69 | +{ |
| 70 | + int temp = *xp; |
| 71 | + *xp = *yp; |
| 72 | + *yp = temp; |
| 73 | +} |
| 74 | + |
| 75 | +// A function to implement bubble sort |
| 76 | +void bubbleSort( int n) |
| 77 | +{ |
| 78 | + int i, j; |
| 79 | + for (i = 0; i < n-1; i++) |
| 80 | + |
| 81 | + // Last i elements are already in place |
| 82 | + for (j = 0; j < n-i-1; j++) |
| 83 | + if (AB[j] > AB[j+1]) |
| 84 | + swapped(&AB[j], &AB[j+1]); |
| 85 | + printArray(n); |
| 86 | +} |
| 87 | + |
| 88 | +void selectionSort( int n) |
| 89 | +{ |
| 90 | + int i, j, min_idx; |
| 91 | + |
| 92 | + // One by one move boundary of unsorted subarray |
| 93 | + for (i = 0; i < n-1; i++) |
| 94 | + { |
| 95 | + // Find the minimum element in unsorted array |
| 96 | + min_idx = i; |
| 97 | + for (j = i+1; j < n; j++) |
| 98 | + if (AB[j] < AB[min_idx]) |
| 99 | + min_idx = j; |
| 100 | + |
| 101 | + // Swap the found minimum element with the first element |
| 102 | + swapped(&AB[min_idx], &AB[i]); |
| 103 | + } |
| 104 | + printArray(n); |
| 105 | +} |
| 106 | +void insertionSort( int n) |
| 107 | +{ |
| 108 | + int i, key, j; |
| 109 | + for (i = 1; i < n; i++) |
| 110 | + { |
| 111 | + key = AB[i]; |
| 112 | + j = i - 1; |
| 113 | + |
| 114 | + /* Move elements of AB[0..i-1], that are |
| 115 | + greater than key, to one position ahead |
| 116 | + of their current position */ |
| 117 | + while (j >= 0 && AB[j] > key) |
| 118 | + { |
| 119 | + AB[j + 1] = AB[j]; |
| 120 | + j = j - 1; |
| 121 | + } |
| 122 | + AB[j + 1] = key; |
| 123 | + } |
| 124 | + |
| 125 | +} |
| 126 | +int part ( int low, int high) |
| 127 | +{ |
| 128 | + int pivot = AB[high]; // pivot |
| 129 | + int i = (low - 1); // Index of smaller element |
| 130 | + |
| 131 | + for (int j = low; j <= high - 1; j++) |
| 132 | + { |
| 133 | + // If current element is smaller than the pivot |
| 134 | + if (AB[j] < pivot) |
| 135 | + { |
| 136 | + i++; // increment index of smaller element |
| 137 | + swapped(&AB[i], &AB[j]); |
| 138 | + } |
| 139 | + } |
| 140 | + swapped(&AB[i + 1], &AB[high]); |
| 141 | + return (i + 1); |
| 142 | +} |
| 143 | +void quickSort( int low, int high) |
| 144 | +{ |
| 145 | + if (low < high) |
| 146 | + { |
| 147 | + // pi is partitioning index, AB[p] is nownat right place |
| 148 | + int pi = part( low, high); |
| 149 | + |
| 150 | + // Separately sort elements before |
| 151 | + // partition and after partition |
| 152 | + quickSort( low, pi - 1); |
| 153 | + quickSort( pi + 1, high); |
| 154 | + } |
| 155 | + |
| 156 | +} |
| 157 | +void merger(int l, int m, int r) |
| 158 | +{ |
| 159 | + int i, j, k; |
| 160 | + int n1 = m - l + 1; |
| 161 | + int n2 = r - m; |
| 162 | + |
| 163 | + /* create temp arrays */ |
| 164 | + int L[n1], R[n2]; |
| 165 | + |
| 166 | + /* Copy data to temp arrays L[] and R[] */ |
| 167 | + for (i = 0; i < n1; i++) |
| 168 | + L[i] = AB[l + i]; |
| 169 | + for (j = 0; j < n2; j++) |
| 170 | + R[j] = AB[m + 1 + j]; |
| 171 | + |
| 172 | + /* Merge the temp arrays back into arr[l..r]*/ |
| 173 | + i = 0; // Initial index of first subarray |
| 174 | + j = 0; // Initial index of second subarray |
| 175 | + k = l; // Initial index of merged subarray |
| 176 | + while (i < n1 && j < n2) { |
| 177 | + if (L[i] <= R[j]) { |
| 178 | + AB[k] = L[i]; |
| 179 | + i++; |
| 180 | + } |
| 181 | + else { |
| 182 | + AB[k] = R[j]; |
| 183 | + j++; |
| 184 | + } |
| 185 | + k++; |
| 186 | + } |
| 187 | + |
| 188 | + /* Copy the remaining elements of L[], if there |
| 189 | + are any */ |
| 190 | + while (i < n1) { |
| 191 | + AB[k] = L[i]; |
| 192 | + i++; |
| 193 | + k++; |
| 194 | + } |
| 195 | + |
| 196 | + /* Copy the remaining elements of R[], if there |
| 197 | + are any */ |
| 198 | + while (j < n2) { |
| 199 | + AB[k] = R[j]; |
| 200 | + j++; |
| 201 | + k++; |
| 202 | + } |
| 203 | +} |
| 204 | + |
| 205 | +/* l is for left index and r is right index of the |
| 206 | + sub-array of arr to be sorted */ |
| 207 | +void mergeSort( int l, int r) |
| 208 | +{ |
| 209 | + if (l < r) { |
| 210 | + // Same as (l+r)/2, but avoids overflow for |
| 211 | + // large l and h |
| 212 | + int m = l + (r - l) / 2; |
| 213 | + |
| 214 | + // Sort first and second halves |
| 215 | + mergeSort( l, m); |
| 216 | + mergeSort( m + 1, r); |
| 217 | + |
| 218 | + merger( l, m, r); |
| 219 | + } |
| 220 | +} |
| 221 | +int main() |
| 222 | +{ int a; |
| 223 | + cout<<"enter the number of elements you want to enter "; |
| 224 | + cin>>a; |
| 225 | + cout<<"\n enter array"; |
| 226 | + input(a); |
| 227 | + char y='y'; |
| 228 | + int x; |
| 229 | + int f,e; |
| 230 | + |
| 231 | + do |
| 232 | + { //system("cls"); |
| 233 | + cout<<"enter choice:: "; |
| 234 | + |
| 235 | + cout<<"\n 1 for linear search "; |
| 236 | + cout<<"\n 2 for binary search "; |
| 237 | + cout<<"\n 3 for Bubble sort "; |
| 238 | + cout<<"\n 4 for Selection sort "; |
| 239 | + cout<<"\n 5 for insertion sort"; |
| 240 | + cout<<"\n 6 for quick sort "; |
| 241 | + cout<<"\n 7 for merge sort"<<endl; |
| 242 | + cin>>x; |
| 243 | + cout<<endl; |
| 244 | + switch(x) |
| 245 | + { |
| 246 | + case 1: linearSearch(a); |
| 247 | + break; |
| 248 | + case 2: cout<<"Enter the number to be searched "; |
| 249 | + cin>>e; |
| 250 | + f=binarySearch(0,a-1,e); |
| 251 | + if(f!=-1) |
| 252 | + cout<<"Element found at "<<f+1<<endl; |
| 253 | + else |
| 254 | + cout<<"Elemnet not found"<<endl; |
| 255 | + break; |
| 256 | + case 3: bubbleSort(a); |
| 257 | + break; |
| 258 | + case 4: selectionSort(a); |
| 259 | + break; |
| 260 | + case 5: insertionSort(a); |
| 261 | + printArray(a); |
| 262 | + break; |
| 263 | + case 6: quickSort(0,a-1); |
| 264 | + printArray(a); |
| 265 | + break; |
| 266 | + case 7: mergeSort(0,a-1); |
| 267 | + printArray(a); |
| 268 | + break; |
| 269 | + default: |
| 270 | + cout<<"enter valid choice"; |
| 271 | + break; |
| 272 | + } |
| 273 | + cout<<"enter y to do continue "; |
| 274 | + cin>>y; |
| 275 | + }while(y=='y'); |
| 276 | + return 0; |
| 277 | +} |
0 commit comments