|
| 1 | +# https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem |
| 2 | + |
| 3 | +import streamlit as st |
| 4 | +import asyncio |
| 5 | +import os |
| 6 | +import shutil |
| 7 | +import tempfile |
| 8 | +import glob |
| 9 | + |
| 10 | +from agents import Agent, Runner, OpenAIChatCompletionsModel, AsyncOpenAI |
| 11 | +from openai.types.responses import ResponseTextDeltaEvent |
| 12 | + |
| 13 | + |
| 14 | +# Create a sample file for demonstration if needed |
| 15 | +def ensure_sample_files(): |
| 16 | + current_dir = os.path.dirname(os.path.abspath(__file__)) |
| 17 | + samples_dir = os.path.join(current_dir, "sample_files") |
| 18 | + |
| 19 | + # Create the directory if it doesn't exist |
| 20 | + os.makedirs(samples_dir, exist_ok=True) |
| 21 | + |
| 22 | + # Create a sample WWDC predictions file |
| 23 | + predictions_file = os.path.join(samples_dir, "wwdc25_predictions.md") |
| 24 | + if not os.path.exists(predictions_file): |
| 25 | + with open(predictions_file, "w") as f: |
| 26 | + f.write("# WWDC25 Predictions\n\n") |
| 27 | + f.write("1. Apple Intelligence features for iPad\n") |
| 28 | + f.write("2. New Apple Watch with health sensors\n") |
| 29 | + f.write("3. Vision Pro 2 announcement\n") |
| 30 | + f.write("4. iOS 18 with advanced customization\n") |
| 31 | + f.write("5. macOS 15 with AI features\n") |
| 32 | + |
| 33 | + # Create a sample WWDC activities file |
| 34 | + activities_file = os.path.join(samples_dir, "wwdc_activities.txt") |
| 35 | + if not os.path.exists(activities_file): |
| 36 | + with open(activities_file, "w") as f: |
| 37 | + f.write("My favorite WWDC activities:\n\n") |
| 38 | + f.write("1. Attending sessions\n") |
| 39 | + f.write("2. Labs with Apple engineers\n") |
| 40 | + f.write("3. Networking events\n") |
| 41 | + f.write("4. Exploring new APIs\n") |
| 42 | + f.write("5. Hands-on demos\n") |
| 43 | + |
| 44 | + return samples_dir |
| 45 | + |
| 46 | + |
| 47 | +# Using a separate event loop to run async code in Streamlit |
| 48 | +class AsyncRunner: |
| 49 | + @staticmethod |
| 50 | + def run_async(func, *args, **kwargs): |
| 51 | + loop = asyncio.new_event_loop() |
| 52 | + asyncio.set_event_loop(loop) |
| 53 | + try: |
| 54 | + return loop.run_until_complete(func(*args, **kwargs)) |
| 55 | + finally: |
| 56 | + loop.close() |
| 57 | + |
| 58 | + |
| 59 | +# Function to read all files in the sample directory and return their contents |
| 60 | +def read_sample_files(): |
| 61 | + samples_dir = ensure_sample_files() |
| 62 | + file_contents = {} |
| 63 | + |
| 64 | + # Read all files in the directory |
| 65 | + for file_path in glob.glob(os.path.join(samples_dir, "*")): |
| 66 | + if os.path.isfile(file_path): |
| 67 | + with open(file_path, 'r') as file: |
| 68 | + file_contents[os.path.basename(file_path)] = file.read() |
| 69 | + |
| 70 | + return file_contents |
| 71 | + |
| 72 | + |
| 73 | +# Function to build context from file contents |
| 74 | +def build_context_from_files(): |
| 75 | + file_contents = read_sample_files() |
| 76 | + context = "Here are the contents of the files in the system:\n\n" |
| 77 | + |
| 78 | + for filename, content in file_contents.items(): |
| 79 | + context += f"--- File: {filename} ---\n{content}\n\n" |
| 80 | + |
| 81 | + return context |
| 82 | + |
| 83 | + |
| 84 | +# Function to run a query with error handling |
| 85 | +def run_agent_query(query): |
| 86 | + try: |
| 87 | + # Read all files and build context |
| 88 | + context = build_context_from_files() |
| 89 | + |
| 90 | + # Combine context and query |
| 91 | + full_prompt = f"{context}\n\nBased on the file contents above, {query}" |
| 92 | + |
| 93 | + async def run_query(): |
| 94 | + try: |
| 95 | + # Initialize Ollama client and local model |
| 96 | + local_model = OpenAIChatCompletionsModel( |
| 97 | + model="deepseek-r1:8b", |
| 98 | + openai_client=AsyncOpenAI(base_url="http://localhost:11434/v1") |
| 99 | + ) |
| 100 | + |
| 101 | + agent = Agent( |
| 102 | + name="Assistant for Content in Files", |
| 103 | + instructions="You are a helpful assistant that answers questions about the file contents provided in the context.", |
| 104 | + model=local_model |
| 105 | + ) |
| 106 | + |
| 107 | + result = await Runner.run(starting_agent=agent, input=full_prompt) |
| 108 | + return result.final_output, None # No trace_id since we're not using MCP |
| 109 | + except Exception as e: |
| 110 | + st.error(f"Error in run_query: {str(e)}") |
| 111 | + return f"Failed to process query: {str(e)}", None |
| 112 | + |
| 113 | + return AsyncRunner.run_async(run_query) |
| 114 | + except Exception as e: |
| 115 | + st.error(f"Error processing query: {str(e)}") |
| 116 | + return f"Failed to process query: {str(e)}", None |
| 117 | + |
| 118 | + |
| 119 | +# Function to run a streaming query with error handling |
| 120 | +def run_agent_query_streamed(query): |
| 121 | + try: |
| 122 | + # Read all files and build context |
| 123 | + context = build_context_from_files() |
| 124 | + |
| 125 | + # Combine context and query |
| 126 | + full_prompt = f"{context}\n\nBased on the file contents above, {query}" |
| 127 | + |
| 128 | + async def run_streamed_query(): |
| 129 | + try: |
| 130 | + # Create a placeholder for the streaming output |
| 131 | + response_placeholder = st.empty() |
| 132 | + full_response = "" |
| 133 | + |
| 134 | + # Initialize Ollama client and local model |
| 135 | + local_model = OpenAIChatCompletionsModel( |
| 136 | + model="deepseek-r1:8b", |
| 137 | + openai_client=AsyncOpenAI(base_url="http://localhost:11434/v1") |
| 138 | + ) |
| 139 | + |
| 140 | + agent = Agent( |
| 141 | + name="Assistant for Content in Files", |
| 142 | + instructions="You are a helpful assistant that answers questions about the file contents provided in the context.", |
| 143 | + model=local_model |
| 144 | + ) |
| 145 | + |
| 146 | + # Stream the response |
| 147 | + result = Runner.run_streamed(agent, full_prompt) |
| 148 | + async for event in result.stream_events(): |
| 149 | + if event.type == "raw_response_event" and isinstance(event.data, ResponseTextDeltaEvent): |
| 150 | + # Append new text to the full response |
| 151 | + full_response += event.data.delta |
| 152 | + # Update the placeholder with the accumulated text |
| 153 | + response_placeholder.markdown(full_response) |
| 154 | + |
| 155 | + return full_response |
| 156 | + except Exception as e: |
| 157 | + st.error(f"Error in run_streamed_query: {str(e)}") |
| 158 | + return f"Failed to process query: {str(e)}" |
| 159 | + |
| 160 | + return AsyncRunner.run_async(run_streamed_query) |
| 161 | + except Exception as e: |
| 162 | + st.error(f"Error processing query: {str(e)}") |
| 163 | + return f"Failed to process query: {str(e)}" |
| 164 | + |
| 165 | + |
| 166 | +def main(): |
| 167 | + st.title("File Explorer Assistant with Ollama and deepseek-r1:8b") |
| 168 | + st.write("This app uses Ollama with deepseek-r1:8b model to read files and answer questions about them.") |
| 169 | + |
| 170 | + # Ensure sample files exist |
| 171 | + ensure_sample_files() |
| 172 | + |
| 173 | + # Display available files |
| 174 | + st.subheader("Available Files") |
| 175 | + files = read_sample_files() |
| 176 | + for filename in files.keys(): |
| 177 | + st.write(f"- {filename}") |
| 178 | + |
| 179 | + # Input area for user queries |
| 180 | + query = st.text_area("Ask me about the files:", height=100) |
| 181 | + |
| 182 | + use_streaming = st.checkbox("Use streaming response", value=True) |
| 183 | + |
| 184 | + if st.button("Submit"): |
| 185 | + if query: |
| 186 | + with st.spinner("Processing your request..."): |
| 187 | + if use_streaming: |
| 188 | + run_agent_query_streamed(query) |
| 189 | + else: |
| 190 | + result, _ = run_agent_query(query) |
| 191 | + st.write("### Response:") |
| 192 | + st.write(result) |
| 193 | + |
| 194 | + # Sample queries |
| 195 | + st.sidebar.header("Sample Queries") |
| 196 | + if st.sidebar.button("List all files"): |
| 197 | + with st.spinner("Processing..."): |
| 198 | + if use_streaming: |
| 199 | + run_agent_query_streamed("List the names of all the files.") |
| 200 | + else: |
| 201 | + result, _ = run_agent_query("List the names of all the files.") |
| 202 | + st.write("### Files in the system:") |
| 203 | + st.write(result) |
| 204 | + |
| 205 | + if st.sidebar.button("WWDC Activities"): |
| 206 | + with st.spinner("Processing..."): |
| 207 | + if use_streaming: |
| 208 | + run_agent_query_streamed("What are my favorite WWDC activities?") |
| 209 | + else: |
| 210 | + result, _ = run_agent_query("What are my favorite WWDC activities?") |
| 211 | + st.write("### WWDC Activities:") |
| 212 | + st.write(result) |
| 213 | + |
| 214 | + if st.sidebar.button("WWDC25 Predictions"): |
| 215 | + with st.spinner("Processing..."): |
| 216 | + if use_streaming: |
| 217 | + run_agent_query_streamed("Look at my wwdc25 predictions. List the predictions that are most likely to be true.") |
| 218 | + else: |
| 219 | + result, _ = run_agent_query("Look at my wwdc25 predictions. List the predictions that are most likely to be true.") |
| 220 | + st.write("### WWDC25 Predictions Analysis:") |
| 221 | + st.write(result) |
| 222 | + |
| 223 | + |
| 224 | +if __name__ == "__main__": |
| 225 | + # Check if the user has Ollama running with deepseek-r1:8b model |
| 226 | + import requests |
| 227 | + try: |
| 228 | + response = requests.get("http://localhost:11434/api/tags") |
| 229 | + if response.status_code == 200: |
| 230 | + models = response.json()["models"] |
| 231 | + deepseek_available = any("deepseek-r1:8b" in model["name"] for model in models) |
| 232 | + if not deepseek_available: |
| 233 | + st.error("deepseek-r1:8b model is not available in Ollama. Please run 'ollama pull deepseek-r1:8b' to download it.") |
| 234 | + st.stop() |
| 235 | + else: |
| 236 | + st.error("Unable to connect to Ollama API. Make sure Ollama is running.") |
| 237 | + st.stop() |
| 238 | + except requests.exceptions.ConnectionError: |
| 239 | + st.error("Unable to connect to Ollama. Make sure Ollama is running at http://localhost:11434") |
| 240 | + st.stop() |
| 241 | + |
| 242 | + main() |
0 commit comments