Skip to content

old version to new version migration #1382

@dadi0005

Description

@dadi0005

I have an issue on moving my code from old version to new version
rmse_scorer = make_scorer(calculate_rmse, greater_is_better=False)

config = {
'NoPreprocessing': {
},

'SavitzkyGolay': {
'filter_win': np.arange(7, 27, 2),
'deriv_order': [0, 1, 2]
},

'LocalStandardNormalVariate': {
'num_windows': [2, 3, 4, 5, 6, 7]
},

'MultipleScatterCorrection': {
},
'Normalize': {
},
'StandardNormalVariate': {
},
'Baseline': {
},

'Detrend': {
},

'sklearn.preprocessing.RobustScaler': {
},

'sklearn.preprocessing.StandardScaler': {
},
'sklearn.preprocessing.PolynomialFeatures': {
'degree': [2],
'include_bias': [True, False],
'interaction_only': [True, False]
},

'sklearn.decomposition.FastICA': {
'n_components': np.arange(1, 187, 1),
'tol': np.arange(0.0, 1.01, 0.05),
'whiten': [True, False],
'algorithm': ['parallel', 'deflation'],
'fun': ['logcosh', 'exp', 'cube']
},

'sklearn.decomposition.PCA': {
'n_components': np.arange(1, 10, 1),
'svd_solver': ['randomized'],
'iterated_power': range(1, 11)
},

'sklearn.linear_model.ElasticNetCV': {
'l1_ratio': np.arange(0.0, 1.01, 0.05),
'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
},

'sklearn.linear_model.LassoLarsCV': {
'normalize': [True, False],
'fit_intercept': [True, False]
},

'sklearn.svm.SVR': {
'loss': ["epsilon_insensitive", "squared_epsilon_insensitive"],
'kernel':['linear', 'poly', 'rbf'],
'degree':[1, 2, 3],
#'dual': [True, False],
'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.],
'epsilon': [1e-4, 1e-3, 1e-2, 1e-1, 1.]
},

'sklearn.linear_model.RidgeCV': {
'alpha': np.logspace(-10, 10, 50),
'fit_intercept': [True, False]
},

'xgboost.XGBRegressor': {
'n_estimators': [100],
'max_depth': range(1, 11),
'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.],
'subsample': np.arange(0.05, 1.01, 0.05),
'min_child_weight': range(1, 21),
'n_jobs': [1],
'verbosity': [0],
'objective': ['reg:squarederror']
},
'sklearn.cross_decomposition.PLSRegression': {
'n_components': range(5, 12)
},
'sklearn.linear_model.TweedieRegressor': {
'power':[0,1,2,3],
'alpha':np.arange(0,3,0.02),
'link':['auto', 'identity', 'log'],
'solver': ['lbfgs', 'newton-cholesky']
},

'sklearn.feature_selection.VarianceThreshold': {
'threshold': [0, .01, .1, .5]
},

'sklearn.feature_selection.SelectPercentile': {
'percentile': [5, 7.5, 10, 12, 15]
},

'sklearn.feature_selection.RFE': {
'estimator': {
'sklearn.cross_decomposition.PLSRegression': {
'n_components': range(5, 12)
}
}
},
'sklearn.feature_selection.SelectFromModel': {
'threshold': np.arange(0, 1.01, 0.05),
'estimator': {
'sklearn.cross_decomposition.PLSRegression': {
'n_components': range(5, 12)
}
}
}
}

pipeline_optimizer = TPOTRegressor(generations=100, population_size=50, cv=5,
config_dict=config, verbosity=2,random_state=42,scoring = rmse_scorer,
n_jobs=-1)

Assuming X_cal.values and y_cal.values are defined

try:
pipeline_optimizer.fit(x.values, y.values[:,0])
except Exception as e:
print(f'Error during model fitting: {e}')

Export the optimized pipeline

try:
pipeline_optimizer.export('C:/Users/abiyh/Downloads/abhiy_newest/abhiy_newest/abhiy.py')
print('Model export complete. Pipeline saved as tpot_db_bsu_pipeline.py.')
except Exception as e:
print(f'Error during model export: {e}')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions