Skip to content

[polybench] kernel symm raising failure #1864

@avik-pal

Description

@avik-pal
module @reactant_kernel_... attributes {mhlo.num_partitions = 1 : i64, mhlo.num_replicas = 1 : i64} {
  func.func @main(%arg0: tensor<f32> {enzymexla.memory_effects = []}, %arg1: tensor<f32> {enzymexla.memory_effects = []}, %arg2: tensor<64x64xf32> {enzymexla.memory_effects = []}, %arg3: tensor<32x64xf32> {enzymexla.memory_effects = []}) -> tensor<32x64xf32> attributes {enzymexla.memory_effects = []} {
    %c = stablehlo.constant dense<0> : tensor<i32>
    %c_0 = stablehlo.constant dense<"0x00000000000000000100000001000000020000000200000003000000030000000400000004000000050000000500000006000000060000000700000007000000080000000800000009000000090000000A0000000A0000000B0000000B0000000C0000000C0000000D0000000D0000000E0000000E0000000F0000000F00000010000000100000001100000011000000120000001200000013000000130000001400000014000000150000001500000016000000160000001700000017000000180000001800000019000000190000001A0000001A0000001B0000001B0000001C0000001C0000001D0000001D0000001E0000001E0000001F0000001F00000020000000200000002100000021000000220000002200000023000000230000002400000024000000250000002500000026000000260000002700000027000000280000002800000029000000290000002A0000002A0000002B0000002B0000002C0000002C0000002D0000002D0000002E0000002E0000002F0000002F00000030000000300000003100000031000000320000003200000033000000330000003400000034000000350000003500000036000000360000003700000037000000380000003800000039000000390000003A0000003A0000003B0000003B0000003C0000003C0000003D0000003D0000003E0000003E0000003F0000003F000000"> : tensor<64x2xi32>
    %c_1 = stablehlo.constant dense<64> : tensor<i64>
    %cst = stablehlo.constant dense<0.000000e+00> : tensor<32x64xf32>
    %c_2 = stablehlo.constant dense<1> : tensor<i32>
    %c_3 = stablehlo.constant dense<0> : tensor<i64>
    %c_4 = stablehlo.constant dense<1> : tensor<i64>
    %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<64x64xf32>) -> tensor<64x64xf32>
    %1 = stablehlo.transpose %arg3, dims = [1, 0] : (tensor<32x64xf32>) -> tensor<64x32xf32>
    %2 = stablehlo.broadcast_in_dim %arg2, dims = [2, 0] : (tensor<64x64xf32>) -> tensor<64x32x64x1xf32>
    %3 = stablehlo.dot_general %arg2, %arg3, contracting_dims = [0] x [1] : (tensor<64x64xf32>, tensor<32x64xf32>) -> tensor<64x32xf32>
    %4 = stablehlo.broadcast_in_dim %arg0, dims = [] : (tensor<f32>) -> tensor<64x32xf32>
    %5 = stablehlo.multiply %4, %1 : tensor<64x32xf32>
    %6 = "stablehlo.gather"(%0, %c_0) <{dimension_numbers = #stablehlo.gather<collapsed_slice_dims = [0, 1], start_index_map = [0, 1], index_vector_dim = 1>, indices_are_sorted = false, slice_sizes = array<i64: 1, 1>}> : (tensor<64x64xf32>, tensor<64x2xi32>) -> tensor<64xf32>
    %7 = stablehlo.broadcast_in_dim %6, dims = [0] : (tensor<64xf32>) -> tensor<64x32xf32>
    %8 = stablehlo.multiply %5, %7 : tensor<64x32xf32>
    %9 = stablehlo.broadcast_in_dim %5, dims = [0, 1] : (tensor<64x32xf32>) -> tensor<64x32x64x1xf32>
    %10 = stablehlo.broadcast_in_dim %arg0, dims = [] : (tensor<f32>) -> tensor<64x32x1x1xf32>
    %11 = stablehlo.reshape %3 : (tensor<64x32xf32>) -> tensor<64x32x1x1xf32>
    %12 = stablehlo.multiply %10, %11 : tensor<64x32x1x1xf32>
    %13 = stablehlo.multiply %9, %2 : tensor<64x32x64x1xf32>
    %14 = stablehlo.broadcast_in_dim %arg1, dims = [] : (tensor<f32>) -> tensor<32x1x1xf32>
    %15:2 = stablehlo.while(%iterArg = %c_3, %iterArg_5 = %cst) : tensor<i64>, tensor<32x64xf32> attributes {enzyme.disable_mincut, enzymexla.symmetric_matrix = [#enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed NOTGUARANTEED>, #enzymexla<guaranteed UNKNOWN>, #enzymexla<guaranteed UNKNOWN>]}
    cond {
      %16 = stablehlo.compare  LT, %iterArg, %c_1 : (tensor<i64>, tensor<i64>) -> tensor<i1>
      stablehlo.return %16 : tensor<i1>
    } do {
      %16 = stablehlo.add %c_4, %iterArg {enzymexla.bounds = [[1, 64]]} : tensor<i64>
      %17 = stablehlo.convert %16 {enzymexla.bounds = [[1, 64]]} : (tensor<i64>) -> tensor<i32>
      %18 = stablehlo.subtract %17, %c_2 {enzymexla.bounds = [[0, 63]]} : tensor<i32>
      %19 = stablehlo.reshape %iterArg_5 : (tensor<32x64xf32>) -> tensor<32x64x1xf32>
      %20 = stablehlo.dynamic_slice %13, %iterArg, %c_3, %c_3, %c_3, sizes = [1, 32, 64, 1] : (tensor<64x32x64x1xf32>, tensor<i64>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<1x32x64x1xf32>
      %21 = stablehlo.reshape %20 : (tensor<1x32x64x1xf32>) -> tensor<32x64x1xf32>
      %22 = stablehlo.add %19, %21 : tensor<32x64x1xf32>
      %23 = stablehlo.convert %18 {enzymexla.bounds = [[0, 63]]} : (tensor<i32>) -> tensor<i64>
      %24 = stablehlo.dynamic_slice %22, %c_3, %23, %c_3, sizes = [32, 1, 1] : (tensor<32x64x1xf32>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<32x1x1xf32>
      %25 = stablehlo.multiply %14, %24 : tensor<32x1x1xf32>
      %26 = stablehlo.dynamic_slice %8, %iterArg, %c_3, sizes = [1, 32] : (tensor<64x32xf32>, tensor<i64>, tensor<i64>) -> tensor<1x32xf32>
      %27 = stablehlo.reshape %26 : (tensor<1x32xf32>) -> tensor<32x1x1xf32>
      %28 = stablehlo.add %25, %27 : tensor<32x1x1xf32>
      %29 = stablehlo.dynamic_slice %12, %iterArg, %c_3, %c_3, %c_3, sizes = [1, 32, 1, 1] : (tensor<64x32x1x1xf32>, tensor<i64>, tensor<i64>, tensor<i64>, tensor<i64>) -> tensor<1x32x1x1xf32>
      %30 = stablehlo.reshape %29 : (tensor<1x32x1x1xf32>) -> tensor<32x1x1xf32>
      %31 = stablehlo.add %28, %30 : tensor<32x1x1xf32>
      %32 = stablehlo.reshape %22 : (tensor<32x64x1xf32>) -> tensor<32x1x64xf32>
      %33 = stablehlo.dynamic_update_slice %32, %31, %c, %c, %18 : (tensor<32x1x64xf32>, tensor<32x1x1xf32>, tensor<i32>, tensor<i32>, tensor<i32>) -> tensor<32x1x64xf32>
      %34 = stablehlo.reshape %33 : (tensor<32x1x64xf32>) -> tensor<32x64xf32>
      stablehlo.return %16, %34 : tensor<i64>, tensor<32x64xf32>
    }
    return %15#1 : tensor<32x64xf32>
  }
}

we are able to raise the 2 inner loops. the outer loop remains

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions