|
1 | | -#' Generate map data file containing ensemble forecast |
2 | | -#' data. |
| 1 | +#' Generate map data file containing ensemble forecast data |
3 | 2 | #' |
4 | 3 | #' This function loads the latest ensemble forecast data |
5 | 4 | #' from the forecast hub and processes it into the required |
|
8 | 7 | #' various forecast horizons, and quantiles (0.025, 0.5, |
9 | 8 | #' and 0.975). |
10 | 9 | #' |
11 | | -#' The ensemble data is expected to contain the following |
12 | | -#' columns: |
13 | | -#' - `reference_date`: the date of the forecast |
14 | | -#' - `location`: state abbreviation |
15 | | -#' - `horizon`: forecast horizon |
16 | | -#' - `target`: forecast target (e.g., "wk inc covid hosp") |
17 | | -#' - `target_end_date`: the forecast target date |
18 | | -#' - `output_type`: type of output (e.g., "quantile") |
19 | | -#' - `output_type_id`: quantile value (e.g., 0.025, 0.5, |
20 | | -#' 0.975) |
21 | | -#' - `value`: forecast value |
22 | | -#' |
23 | | -#' The resulting map file will have the following columns: |
24 | | -#' - `location_name`: full state name (including "US" for |
25 | | -#' the US state) |
26 | | -#' - `quantile_*`: the quantile forecast values (rounded |
27 | | -#' to two decimal places) |
28 | | -#' - `horizon`: forecast horizon |
29 | | -#' - `target`: forecast target (e.g., "7 day ahead inc |
30 | | -#' hosp") |
31 | | -#' - `target_end_date`: target date for the forecast (Ex: |
32 | | -#' 2024-11-30) |
33 | | -#' - `reference_date`: date that the forecast was generated |
34 | | -#' (Ex: 2024-11-23) |
35 | | -#' - `target_end_date_formatted`: target date for the |
36 | | -#' forecast, prettily re-formatted as a string (Ex: |
37 | | -#' "November 30, 2024") |
38 | | -#' - `reference_date_formatted`: date that the forecast |
39 | | -#' was generated, prettily re-formatted as a string |
40 | | -#' (Ex: "November 23, 2024") |
41 | | -#' |
42 | 10 | #' @param reference_date character, the reference date for |
43 | 11 | #' the forecast in YYYY-MM-DD format (ISO-8601). |
44 | 12 | #' @param base_hub_path character, path to the forecast |
@@ -67,143 +35,14 @@ get_map_data <- function( |
67 | 35 | excluded_locations = character(0), |
68 | 36 | output_format = "csv" |
69 | 37 | ) { |
70 | | - checkmate::assert_choice(disease, choices = c("covid", "rsv")) |
71 | | - checkmate::assert_subset(horizons_to_include, choices = c(-1, 0, 1, 2, 3)) |
72 | | - checkmate::assert_data_frame(population_data) |
73 | | - checkmate::assert_names( |
74 | | - colnames(population_data), |
75 | | - must.include = c("location", "population") |
76 | | - ) |
77 | | - checkmate::assert_character(excluded_locations) |
78 | | - checkmate::assert_choice(output_format, choices = c("csv", "tsv", "parquet")) |
79 | | - |
80 | | - reference_date <- lubridate::as_date(reference_date) |
81 | | - |
82 | | - hub_name <- get_hub_name(disease) |
83 | | - ensemble_model_name <- glue::glue("{hub_name}-ensemble") |
84 | | - |
85 | | - ensemble_data <- hubData::connect_hub(base_hub_path) |> |
86 | | - dplyr::filter( |
87 | | - .data$reference_date == !!reference_date, |
88 | | - .data$model_id == !!ensemble_model_name |
89 | | - ) |> |
90 | | - hubData::collect_hub() |
91 | | - |
92 | | - if (nrow(ensemble_data) == 0) { |
93 | | - cli::cli_abort( |
94 | | - glue::glue( |
95 | | - "No ensemble data found for reference date {reference_date} ", |
96 | | - "and model {ensemble_model_name}" |
97 | | - ) |
98 | | - ) |
99 | | - } |
100 | | - |
101 | | - # process ensemble data into the required format for Map file |
102 | | - map_data <- forecasttools::pivot_hubverse_quantiles_wider( |
103 | | - hubverse_table = ensemble_data, |
104 | | - pivot_quantiles = c( |
105 | | - "quantile_0.025" = 0.025, |
106 | | - "quantile_0.25" = 0.25, |
107 | | - "quantile_0.5" = 0.5, |
108 | | - "quantile_0.75" = 0.75, |
109 | | - "quantile_0.975" = 0.975 |
110 | | - ) |
111 | | - ) |> |
112 | | - dplyr::filter(.data$horizon %in% !!horizons_to_include) |> |
113 | | - dplyr::filter(!(.data$location %in% !!excluded_locations)) |> |
114 | | - dplyr::mutate( |
115 | | - reference_date = as.Date(.data$reference_date), |
116 | | - target_end_date = as.Date(.data$target_end_date), |
117 | | - model = !!ensemble_model_name |
118 | | - ) |> |
119 | | - # convert location column codes to full location names |
120 | | - dplyr::mutate( |
121 | | - location = forecasttools::us_location_recode( |
122 | | - .data$location, |
123 | | - "hub", |
124 | | - "name" |
125 | | - ) |
126 | | - ) |> |
127 | | - # long name "United States" to "US" |
128 | | - dplyr::mutate( |
129 | | - location = dplyr::case_match( |
130 | | - .data$location, |
131 | | - "United States" ~ "US", |
132 | | - .default = .data$location |
133 | | - ), |
134 | | - # sort locations alphabetically, except for US |
135 | | - location_sort_order = ifelse(.data$location == "US", 0, 1) |
136 | | - ) |> |
137 | | - dplyr::arrange(.data$location_sort_order, .data$location) |> |
138 | | - dplyr::left_join( |
139 | | - population_data, |
140 | | - by = "location" |
141 | | - ) |> |
142 | | - dplyr::mutate( |
143 | | - population = as.numeric(.data$population), |
144 | | - quantile_0.025_per100k = .data$quantile_0.025 / .data$population * 100000, |
145 | | - quantile_0.5_per100k = .data$quantile_0.5 / .data$population * 100000, |
146 | | - quantile_0.975_per100k = .data$quantile_0.975 / .data$population * 100000, |
147 | | - quantile_0.025_count = .data$quantile_0.025, |
148 | | - quantile_0.5_count = .data$quantile_0.5, |
149 | | - quantile_0.975_count = .data$quantile_0.975, |
150 | | - quantile_0.025_per100k_rounded = round(.data$quantile_0.025_per100k, 2), |
151 | | - quantile_0.5_per100k_rounded = round(.data$quantile_0.5_per100k, 2), |
152 | | - quantile_0.975_per100k_rounded = round(.data$quantile_0.975_per100k, 2), |
153 | | - quantile_0.025_count_rounded = round(.data$quantile_0.025_count), |
154 | | - quantile_0.5_count_rounded = round(.data$quantile_0.5_count), |
155 | | - quantile_0.975_count_rounded = round(.data$quantile_0.975_count), |
156 | | - target_end_date_formatted = format(.data$target_end_date, "%B %d, %Y"), |
157 | | - reference_date_formatted = format(.data$reference_date, "%B %d, %Y"), |
158 | | - forecast_due_date = as.Date(!!reference_date) - 3, |
159 | | - forecast_due_date_formatted = format( |
160 | | - .data$forecast_due_date, |
161 | | - "%B %d, %Y" |
162 | | - ), |
163 | | - ) |> |
164 | | - dplyr::select( |
165 | | - location_name = "location", |
166 | | - "horizon", |
167 | | - "quantile_0.025_per100k", |
168 | | - "quantile_0.5_per100k", |
169 | | - "quantile_0.975_per100k", |
170 | | - "quantile_0.025_count", |
171 | | - "quantile_0.5_count", |
172 | | - "quantile_0.975_count", |
173 | | - "quantile_0.025_per100k_rounded", |
174 | | - "quantile_0.5_per100k_rounded", |
175 | | - "quantile_0.975_per100k_rounded", |
176 | | - "quantile_0.025_count_rounded", |
177 | | - "quantile_0.5_count_rounded", |
178 | | - "quantile_0.975_count_rounded", |
179 | | - "target", |
180 | | - "target_end_date", |
181 | | - "reference_date", |
182 | | - "forecast_due_date", |
183 | | - "target_end_date_formatted", |
184 | | - "forecast_due_date_formatted", |
185 | | - "reference_date_formatted", |
186 | | - "model", |
187 | | - ) |
188 | | - |
189 | | - output_folder_path <- fs::path( |
190 | | - hub_reports_path, |
191 | | - "weekly-summaries", |
192 | | - reference_date |
193 | | - ) |
194 | | - output_filename <- glue::glue("{reference_date}_{disease}_map_data") |
195 | | - output_filepath <- fs::path( |
196 | | - output_folder_path, |
197 | | - output_filename, |
198 | | - ext = output_format |
| 38 | + write_ref_date_summary_ensemble( |
| 39 | + reference_date = reference_date, |
| 40 | + base_hub_path = base_hub_path, |
| 41 | + hub_reports_path = hub_reports_path, |
| 42 | + disease = disease, |
| 43 | + horizons_to_include = horizons_to_include, |
| 44 | + population_data = population_data, |
| 45 | + excluded_locations = excluded_locations, |
| 46 | + output_format = output_format |
199 | 47 | ) |
200 | | - |
201 | | - fs::dir_create(output_folder_path) |
202 | | - |
203 | | - if (!fs::file_exists(output_filepath)) { |
204 | | - forecasttools::write_tabular(map_data, output_filepath) |
205 | | - cli::cli_inform("File saved as: {output_filepath}") |
206 | | - } else { |
207 | | - cli::cli_abort("File already exists: {output_filepath}") |
208 | | - } |
209 | 48 | } |
0 commit comments