|
| 1 | +import logging |
| 2 | +import os |
| 3 | +os.environ['CUDA_VISIBLE_DEVICES'] = "" |
| 4 | +import sys |
| 5 | +from dataclasses import dataclass, field |
| 6 | +from typing import Optional |
| 7 | + |
| 8 | +import datasets |
| 9 | +from datasets import load_dataset, load_metric |
| 10 | + |
| 11 | +import transformers |
| 12 | +from transformers import ( |
| 13 | + Trainer, |
| 14 | + EvalPrediction, |
| 15 | + HfArgumentParser, |
| 16 | + TrainingArguments, |
| 17 | + set_seed, |
| 18 | + default_data_collator, |
| 19 | +) |
| 20 | +from transformers.trainer_utils import get_last_checkpoint |
| 21 | +from transformers.utils import check_min_version |
| 22 | +from transformers.utils.versions import require_version |
| 23 | +# from utils_qa import postprocess_qa_predictions |
| 24 | + |
| 25 | +from pytree import ( |
| 26 | + NaryConfig, |
| 27 | + NaryTree, |
| 28 | + ChildSumConfig, |
| 29 | + ChildSumTree, |
| 30 | + GloveTokenizer, |
| 31 | + Similarity, |
| 32 | + SimilarityConfig |
| 33 | +) |
| 34 | +from pytree.data import prepare_input_from_constituency_tree, prepare_input_from_dependency_tree |
| 35 | +from pytree.data.utils import build_tree_ids_n_ary |
| 36 | + |
| 37 | +from supar import Parser |
| 38 | +import torch |
| 39 | +import numpy as np |
| 40 | +import math |
| 41 | +from sklearn.metrics import mean_squared_error |
| 42 | +from scipy.stats import pearsonr, spearmanr |
| 43 | + |
| 44 | +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. |
| 45 | +check_min_version("4.11.0") # 4.12.0.dev0 |
| 46 | + |
| 47 | +require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") |
| 48 | + |
| 49 | +logger = logging.getLogger(__name__) |
| 50 | + |
| 51 | +class SickTrainer(Trainer): |
| 52 | + |
| 53 | + def create_optimizer(self): |
| 54 | + """ |
| 55 | + Setup the optimizer. |
| 56 | +
|
| 57 | + We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the |
| 58 | + Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. |
| 59 | + """ |
| 60 | + self.optimizer = torch.optim.Adagrad(self.model.parameters(), lr=0.025, weight_decay=self.args.weight_decay) |
| 61 | + |
| 62 | + # if self.sharded_ddp == ShardedDDPOption.SIMPLE: |
| 63 | + # self.optimizer = OSS( |
| 64 | + # params=optimizer_grouped_parameters, |
| 65 | + # optim=optimizer_cls, |
| 66 | + # **optimizer_kwargs, |
| 67 | + # ) |
| 68 | + # else: |
| 69 | + # self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) |
| 70 | + |
| 71 | + # if is_sagemaker_mp_enabled(): |
| 72 | + # self.optimizer = smp.DistributedOptimizer(self.optimizer) |
| 73 | + |
| 74 | + return self.optimizer |
| 75 | + |
| 76 | + |
| 77 | +con = Parser.load('crf-con-en') |
| 78 | +glove_tokenizer = GloveTokenizer(glove_file_path='/data/asimouli/GLOVE/glove.6B.300d.txt', vocab_size=10000) |
| 79 | + |
| 80 | +config = NaryConfig() |
| 81 | +encoder = NaryTree(config) |
| 82 | +encoder.embeddings.load_pretrained_embeddings( |
| 83 | + torch.tensor(glove_tokenizer.embeddings_arr)) |
| 84 | +config_similarity = SimilarityConfig() |
| 85 | +model = Similarity(encoder, config_similarity) |
| 86 | + |
| 87 | +raw_datasets = load_dataset('sick') |
| 88 | +column_names = raw_datasets["train"].column_names |
| 89 | + |
| 90 | +def map_label_to_target(label, num_classes): |
| 91 | + target = [0] * num_classes # torch.zeros(1, num_classes, dtype=torch.float) |
| 92 | + ceil = int(math.ceil(label)) |
| 93 | + floor = int(math.floor(label)) |
| 94 | + if ceil == floor: |
| 95 | + target[floor - 1] = 1 |
| 96 | + else: |
| 97 | + target[floor - 1] = ceil - label |
| 98 | + target[ceil - 1] = label - floor |
| 99 | + return target |
| 100 | + |
| 101 | +def prepare_train_features(examples): |
| 102 | + examples['input_ids_A'] = [] |
| 103 | + examples['input_ids_B'] = [] |
| 104 | + examples['head_idx_A'] = [] |
| 105 | + examples['head_idx_B'] = [] |
| 106 | + examples['labels'] = [] |
| 107 | + |
| 108 | + for sent_A in examples['sentence_A']: |
| 109 | + con_tree_A = str(con.predict(sent_A.split(), verbose=False)[0]) |
| 110 | + input_ids_A, head_idx_A = prepare_input_from_constituency_tree(con_tree_A) |
| 111 | + input_ids_A = glove_tokenizer.convert_tokens_to_ids(input_ids_A) |
| 112 | + examples['input_ids_A'].append(input_ids_A) |
| 113 | + examples['head_idx_A'].append(head_idx_A) |
| 114 | + |
| 115 | + for sent_B in examples['sentence_B']: |
| 116 | + con_tree_B = str(con.predict(sent_B.split(), verbose=False)[0]) |
| 117 | + input_ids_B, head_idx_B = prepare_input_from_constituency_tree(con_tree_B) |
| 118 | + input_ids_B = glove_tokenizer.convert_tokens_to_ids(input_ids_B) |
| 119 | + examples['input_ids_B'].append(input_ids_B) |
| 120 | + examples['head_idx_B'].append(head_idx_B) |
| 121 | + |
| 122 | + for rel_score in examples['relatedness_score']: |
| 123 | + examples['labels'].append(map_label_to_target(rel_score, 5)) |
| 124 | + |
| 125 | + return examples |
| 126 | + |
| 127 | +training_args = TrainingArguments( |
| 128 | + learning_rate=0.025, |
| 129 | + per_device_train_batch_size=25, |
| 130 | + num_train_epochs=20, |
| 131 | + weight_decay=1e-4, |
| 132 | + lr_scheduler_type='constant', |
| 133 | + output_dir="/home/asimouli/PhD/PyTree/pytree_remote/model", |
| 134 | + do_train=True, |
| 135 | + do_eval=True, |
| 136 | + remove_unused_columns=False) |
| 137 | + |
| 138 | +train_examples = raw_datasets["train"] |
| 139 | +with training_args.main_process_first(desc="train dataset map pre-processing"): |
| 140 | + train_dataset = train_examples.map( |
| 141 | + prepare_train_features, |
| 142 | + batched=True, |
| 143 | + num_proc=None, |
| 144 | + remove_columns=None, |
| 145 | + load_from_cache_file=True, |
| 146 | + desc="Running parser on train dataset", |
| 147 | + ) |
| 148 | + |
| 149 | +# # Validation preprocessing |
| 150 | + |
| 151 | +eval_examples = raw_datasets["validation"] |
| 152 | +eval_dataset = eval_examples.map( |
| 153 | + prepare_train_features, |
| 154 | + batched=True, |
| 155 | + num_proc=None, |
| 156 | + remove_columns=None, # column_names, |
| 157 | + desc="Running parser on validation dataset", |
| 158 | +) |
| 159 | + |
| 160 | +def data_collator_with_padding(features, pad_ids=0, columns=None): |
| 161 | + batch = {} |
| 162 | + first = features[0] |
| 163 | + if columns is None: |
| 164 | + columns = ["head_idx_A", "head_idx_B", "input_ids_A", "input_ids_B"] |
| 165 | + feature_max_len = {k: max([len(f[k]) for f in features]) for k in first.keys() if k in columns or len(columns) == 0} |
| 166 | + for k, v in first.items(): |
| 167 | + if k in columns or len(columns) == 0: |
| 168 | + feature_padded = [list([int(ff) for ff in f[k]]) + [0] * (feature_max_len[k] - len(f[k])) for f in features] |
| 169 | + batch[k] = feature_padded # [f[k] for f in features] |
| 170 | + tree_ids_A, tree_ids_r_A, tree_ids_l_A = build_tree_ids_n_ary(batch['head_idx_A']) |
| 171 | + tree_ids_B, tree_ids_r_B, tree_ids_l_B = build_tree_ids_n_ary(batch['head_idx_B']) |
| 172 | + batch['input_ids_A'] = torch.tensor(batch['input_ids_A']) |
| 173 | + batch['input_ids_B'] = torch.tensor(batch['input_ids_B']) |
| 174 | + batch['tree_ids_A'] = torch.tensor(tree_ids_A) |
| 175 | + batch['tree_ids_B'] = torch.tensor(tree_ids_B) |
| 176 | + batch['tree_ids_r_A'] = torch.tensor(tree_ids_r_A) |
| 177 | + batch['tree_ids_r_B'] = torch.tensor(tree_ids_r_B) |
| 178 | + batch['tree_ids_l_A'] = torch.tensor(tree_ids_l_A) |
| 179 | + batch['tree_ids_l_B'] = torch.tensor(tree_ids_l_B) |
| 180 | + batch['labels'] = torch.tensor([f['labels'] for f in features]) |
| 181 | + return batch |
| 182 | + |
| 183 | +data_collator = data_collator_with_padding |
| 184 | + |
| 185 | +def compute_metrics(eval_prediction): |
| 186 | + prediction = np.matmul(np.exp(eval_prediction.predictions), np.arange(1, 5 + 1)) |
| 187 | + target = np.matmul(eval_prediction.label_ids, np.arange(1, 5 + 1)) |
| 188 | + results_relatedness = { |
| 189 | + 'pearson': pearsonr(prediction, target)[0] * 100, |
| 190 | + 'spearman': spearmanr(prediction, target)[0] * 100, |
| 191 | + 'mse': mean_squared_error(prediction, target) * 100 |
| 192 | + } |
| 193 | + return results_relatedness |
| 194 | + |
| 195 | +trainer = SickTrainer( |
| 196 | + model=model, |
| 197 | + args=training_args, |
| 198 | + train_dataset=train_dataset, |
| 199 | + eval_dataset=eval_dataset, |
| 200 | + data_collator=data_collator, |
| 201 | + compute_metrics=compute_metrics, |
| 202 | + optimizers=("Adagrad", None), |
| 203 | +) |
| 204 | + |
| 205 | +# Training |
| 206 | + |
| 207 | +train_result = trainer.train(resume_from_checkpoint=None) |
| 208 | +trainer.save_model() # Saves the tokenizer too for easy upload |
| 209 | + |
| 210 | +metrics = train_result.metrics |
| 211 | +max_train_samples = len(train_dataset) |
| 212 | +metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
| 213 | + |
| 214 | +trainer.log_metrics("train", metrics) |
| 215 | +trainer.save_metrics("train", metrics) |
| 216 | +trainer.save_state() |
| 217 | + |
| 218 | + |
| 219 | +logger.info("*** Evaluate ***") |
| 220 | +metrics = trainer.evaluate() |
| 221 | + |
| 222 | +max_eval_samples = len(eval_dataset) |
| 223 | +metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
| 224 | + |
| 225 | +trainer.log_metrics("eval", metrics) |
| 226 | +trainer.save_metrics("eval", metrics) |
| 227 | + |
0 commit comments