|
| 1 | +# Python program for Dijkstra's shortest path algorithm for adjacency list representation of graph |
| 2 | + |
| 3 | +from collections import defaultdict |
| 4 | +import sys |
| 5 | + |
| 6 | +class Heap(): |
| 7 | + |
| 8 | + def __init__(self): |
| 9 | + self.array = [] |
| 10 | + self.size = 0 |
| 11 | + self.pos = [] |
| 12 | + |
| 13 | + def newMinHeapNode(self, v, dist): |
| 14 | + minHeapNode = [v, dist] |
| 15 | + return minHeapNode |
| 16 | + |
| 17 | + # A utility function to swap two nodes |
| 18 | + # of min heap. Needed for min heapify |
| 19 | + def swapMinHeapNode(self,a, b): |
| 20 | + t = self.array[a] |
| 21 | + self.array[a] = self.array[b] |
| 22 | + self.array[b] = t |
| 23 | + |
| 24 | + |
| 25 | + def minHeapify(self, idx): |
| 26 | + smallest = idx |
| 27 | + left = 2*idx + 1 |
| 28 | + right = 2*idx + 2 |
| 29 | + |
| 30 | + if left < self.size and self.array[left][1] \ |
| 31 | + < self.array[smallest][1]: |
| 32 | + smallest = left |
| 33 | + |
| 34 | + if right < self.size and self.array[right][1]\ |
| 35 | + < self.array[smallest][1]: |
| 36 | + smallest = right |
| 37 | + |
| 38 | + |
| 39 | + if smallest != idx: |
| 40 | + |
| 41 | + # Swap positions |
| 42 | + self.pos[ self.array[smallest][0] ] = idx |
| 43 | + self.pos[ self.array[idx][0] ] = smallest |
| 44 | + |
| 45 | + |
| 46 | + self.swapMinHeapNode(smallest, idx) |
| 47 | + |
| 48 | + self.minHeapify(smallest) |
| 49 | + |
| 50 | + |
| 51 | + def extractMin(self): |
| 52 | + |
| 53 | + |
| 54 | + if self.isEmpty() == True: |
| 55 | + return |
| 56 | + |
| 57 | + |
| 58 | + root = self.array[0] |
| 59 | + |
| 60 | + |
| 61 | + lastNode = self.array[self.size - 1] |
| 62 | + self.array[0] = lastNode |
| 63 | + |
| 64 | + |
| 65 | + self.pos[lastNode[0]] = 0 |
| 66 | + self.pos[root[0]] = self.size - 1 |
| 67 | + |
| 68 | + |
| 69 | + self.size -= 1 |
| 70 | + self.minHeapify(0) |
| 71 | + |
| 72 | + return root |
| 73 | + |
| 74 | + def isEmpty(self): |
| 75 | + return True if self.size == 0 else False |
| 76 | + |
| 77 | + def decreaseKey(self, v, dist): |
| 78 | + |
| 79 | + # Get the index of v in heap array |
| 80 | + |
| 81 | + i = self.pos[v] |
| 82 | + |
| 83 | + |
| 84 | + self.array[i][1] = dist |
| 85 | + |
| 86 | + |
| 87 | + while i > 0 and self.array[i][1] < self.array[(i - 1) / 2][1]: |
| 88 | + |
| 89 | + # Swap this node with its parent |
| 90 | + self.pos[ self.array[i][0] ] = (i-1)/2 |
| 91 | + self.pos[ self.array[(i-1)/2][0] ] = i |
| 92 | + self.swapMinHeapNode(i, (i - 1)/2 ) |
| 93 | + |
| 94 | + # move to parent index |
| 95 | + i = (i - 1) / 2; |
| 96 | + |
| 97 | + # A utility function to check if a given |
| 98 | + # vertex 'v' is in min heap or not |
| 99 | + def isInMinHeap(self, v): |
| 100 | + |
| 101 | + if self.pos[v] < self.size: |
| 102 | + return True |
| 103 | + return False |
| 104 | + |
| 105 | + |
| 106 | +def printArr(dist, n): |
| 107 | + print "Vertex\tDistance from source" |
| 108 | + for i in range(n): |
| 109 | + print "%d\t\t%d" % (i,dist[i]) |
| 110 | + |
| 111 | + |
| 112 | +class Graph(): |
| 113 | + |
| 114 | + def __init__(self, V): |
| 115 | + self.V = V |
| 116 | + self.graph = defaultdict(list) |
| 117 | + |
| 118 | + |
| 119 | + def addEdge(self, src, dest, weight): |
| 120 | + |
| 121 | + |
| 122 | + newNode = [dest, weight] |
| 123 | + self.graph[src].insert(0, newNode) |
| 124 | + |
| 125 | + |
| 126 | + newNode = [src, weight] |
| 127 | + self.graph[dest].insert(0, newNode) |
| 128 | + |
| 129 | + |
| 130 | + def dijkstra(self, src): |
| 131 | + |
| 132 | + V = self.V # Get the number of vertices in graph |
| 133 | + dist = [] # dist values used to pick minimum |
| 134 | + # weight edge in cut |
| 135 | + |
| 136 | + minHeap = Heap() |
| 137 | + |
| 138 | + for v in range(V): |
| 139 | + dist.append(sys.maxint) |
| 140 | + minHeap.array.append( minHeap.newMinHeapNode(v, dist[v]) ) |
| 141 | + minHeap.pos.append(v) |
| 142 | + |
| 143 | + |
| 144 | + minHeap.pos[src] = src |
| 145 | + dist[src] = 0 |
| 146 | + minHeap.decreaseKey(src, dist[src]) |
| 147 | + |
| 148 | + |
| 149 | + minHeap.size = V; |
| 150 | + |
| 151 | + |
| 152 | + while minHeap.isEmpty() == False: |
| 153 | + |
| 154 | + |
| 155 | + newHeapNode = minHeap.extractMin() |
| 156 | + u = newHeapNode[0] |
| 157 | + |
| 158 | + |
| 159 | + for pCrawl in self.graph[u]: |
| 160 | + |
| 161 | + v = pCrawl[0] |
| 162 | + |
| 163 | + |
| 164 | + if minHeap.isInMinHeap(v) and dist[u] != sys.maxint and \ |
| 165 | + pCrawl[1] + dist[u] < dist[v]: |
| 166 | + dist[v] = pCrawl[1] + dist[u] |
| 167 | + |
| 168 | + |
| 169 | + minHeap.decreaseKey(v, dist[v]) |
| 170 | + |
| 171 | + printArr(dist,V) |
| 172 | + |
| 173 | + |
| 174 | +# Driver program to test the above functions |
| 175 | +graph = Graph(9) |
| 176 | +graph.addEdge(0, 1, 4) |
| 177 | +graph.addEdge(0, 7, 8) |
| 178 | +graph.addEdge(1, 2, 8) |
| 179 | +graph.addEdge(1, 7, 11) |
| 180 | +graph.addEdge(2, 3, 7) |
| 181 | +graph.addEdge(2, 8, 2) |
| 182 | +graph.addEdge(2, 5, 4) |
| 183 | +graph.addEdge(3, 4, 9) |
| 184 | +graph.addEdge(3, 5, 14) |
| 185 | +graph.addEdge(4, 5, 10) |
| 186 | +graph.addEdge(5, 6, 2) |
| 187 | +graph.addEdge(6, 7, 1) |
| 188 | +graph.addEdge(6, 8, 6) |
| 189 | +graph.addEdge(7, 8, 7) |
| 190 | +graph.dijkstra(0) |
0 commit comments