|
| 1 | + |
| 2 | +// C/C++ program to solve fractional Knapsack Problem |
| 3 | +#include <bits/stdc++.h> |
| 4 | + |
| 5 | +using namespace std; |
| 6 | + |
| 7 | +// Structure for an item which stores weight and corresponding |
| 8 | +// value of Item |
| 9 | +struct Item |
| 10 | +{ |
| 11 | + int value, weight; |
| 12 | + |
| 13 | + // Constructor |
| 14 | + Item(int value, int weight) : value(value), weight(weight) |
| 15 | + {} |
| 16 | +}; |
| 17 | + |
| 18 | +// Comparison function to sort Item according to val/weight ratio |
| 19 | +bool cmp(struct Item a, struct Item b) |
| 20 | +{ |
| 21 | + double r1 = (double)a.value / a.weight; |
| 22 | + double r2 = (double)b.value / b.weight; |
| 23 | + return r1 > r2; |
| 24 | +} |
| 25 | + |
| 26 | +// Main greedy function to solve problem |
| 27 | +double fractionalKnapsack(int W, struct Item arr[], int n) |
| 28 | +{ |
| 29 | + // sorting Item on basis of ratio |
| 30 | + sort(arr, arr + n, cmp); |
| 31 | + |
| 32 | + // Uncomment to see new order of Items with their ratio |
| 33 | + /* |
| 34 | + for (int i = 0; i < n; i++) |
| 35 | + { |
| 36 | + cout << arr[i].value << " " << arr[i].weight << " : " |
| 37 | + << ((double)arr[i].value / arr[i].weight) << endl; |
| 38 | + } |
| 39 | + */ |
| 40 | + |
| 41 | + int curWeight = 0; // Current weight in knapsack |
| 42 | + double finalvalue = 0.0; // Result (value in Knapsack) |
| 43 | + |
| 44 | + // Looping through all Items |
| 45 | + for (int i = 0; i < n; i++) |
| 46 | + { |
| 47 | + // If adding Item won't overflow, add it completely |
| 48 | + if (curWeight + arr[i].weight <= W) |
| 49 | + { |
| 50 | + curWeight += arr[i].weight; |
| 51 | + finalvalue += arr[i].value; |
| 52 | + } |
| 53 | + |
| 54 | + // If we can't add current Item, add fractional part of it |
| 55 | + else |
| 56 | + { |
| 57 | + int remain = W - curWeight; |
| 58 | + finalvalue += arr[i].value * ((double) remain / arr[i].weight); |
| 59 | + break; |
| 60 | + } |
| 61 | + } |
| 62 | + |
| 63 | + // Returning final value |
| 64 | + return finalvalue; |
| 65 | +} |
| 66 | + |
| 67 | +// driver program to test above function |
| 68 | +int main() |
| 69 | +{ |
| 70 | + int W = 50; // Weight of knapsack |
| 71 | + Item arr[] = {{60, 10}, {100, 20}, {120, 30}}; |
| 72 | + |
| 73 | + int n = sizeof(arr) / sizeof(arr[0]); |
| 74 | + |
| 75 | + cout << "Maximum value we can obtain = " |
| 76 | + << fractionalKnapsack(W, arr, n); |
| 77 | + return 0; |
| 78 | +} |
0 commit comments